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Search Problems

* A search problem consists of:

o L 1 LLLL
* For each state, a set
Actions(s) of successors/actlons ' {N, E}
(INII 1 O n

IIEII 1 O

e A successor function
* A transition model T(s,a)
» A step cost(reward) function c(s,a,s’)

e A start state and a goal test

e A solution is a sequence of actions (a plan) which
transforms the start state to a goal state



State Space Graphs

 State space graph: A mathematical
representation of a search problem
* Nodes are (abstracted) world configurations
* Arcs represent successors (action results)

* |n a state space graph, each state occurs only !
once!

* The goal test is a set of goal nodes (maybe only one) /

* We can rarely build this full graph in memory l
(it’s too big), but it’s a useful idea




Search Trees

’ This is now / start

”N’:,l.()/ “E”, 1.0

u H Possible futures

* A search tree:
* A “whatif” tree of plans and their outcomes
The start state is the root node
Children correspond to successors
Nodes show states, but correspond to PLANS that achieve those states
For most problems, we can never actually build the whole tree



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct both
on demand — and
we construct as
little as possible.
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Tree Search



Searching with a Search Tree

Arad

CArad > CFagaras> COradea>  @iricu Vieh)

* Search:
* Expand out potential plans (tree nodes)
* Maintain a fringe of partial plans under consideration
* Try to expand as few tree nodes as possible



ends of
paths on

General Tree Search ot .r®

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

* Important ideas:
* Fringe
* Expansion
* Exploration strategy

* Main question: which fringe nodes to explore?



General Tree Search 2

TREE_SEARCH(problem) a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier



Depth-First (Tree) Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

11



Breadth-First (Tree) Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Search

Tiers




Search Algorithm Properties

 Complete: Guaranteed to find a solution if one exists?

* Optimal: Guaranteed to find the least cost path?

: : [,
* Time complexity? 1 node
. b nod
* Space complexity? noaes
b2 nodes

* Cartoon of search tree: m tiers <

* bis the branching factor

* mis the maximum depth

* solutions at various depths L b nodes

e Number of nodes in entire tree?
e 1+b+b2+..+b™=0(b™)

13



Depth-First Search (DFS) Properties

What nodes DFS expand?
* Some left prefix of the tree.
* Could process the whole tree!
* If mis finite, takes time O(b™)
m tiers <<
How much space does the fringe take?
* Only has siblings on path to root, so O(bm)

-

Is it complete?

* m could be infinite, so only if we prevent cycles
(more later)

Is it optimal?

* No, it finds the “leftmost” solution, regardless of
depth or cost

1 node

b nodes

b2 nodes

b™ nodes
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Breadth-First Search (BFS) Properties

* What nodes does BFS expand? ~ .
* Processes all nodes above shallowest solution b ) node
* Let depth of shallowest solution be s stiers < noaes
* Search takes time O(b") / b2 nodes
 How much space does the fringe take? - / O A\ b* nodes
* Has roughly the last tier, so O(b?) o
b™ nodes

* |s it complete? O
* s must be finite if a solution exists

* |s it optimal?
e Only if costs are all 1 (more on costs later)

15



[terative Deepening

* |dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
* Run a DFS with depth limit 1. If no solution...
* Run a DFS with depth limit 2. If no solution...
* Run a DFS with depth limit 3. .....

* Isn’t that wastefully redundant?

* Generally most work happens in the lowest level
searched, so not so bad!

/
/

/




Finding a Least-Cost Path

* BFS finds the shortest path in terms of number of actions, but not the
least-cost path

* A similar algorithm would find the least-cost path




Uniform Cost Search

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

-

Cost< (@6 a w13 ()7
N\ |

contours




Uniform Cost Search 2

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the frontier as a priority queue using node’s path_cost as the priority
add initial state of problem to frontier with path_cost =0

the frontier is empty

failure
choose a node (with minimal path_cost) and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier with path_cost = path_cost(node) + cost(node, child)

19



Uniform Cost Search (UCS) Properties

* What nodes does UCS expand?
* Processes all nodes with cost less than cheapest solution!

* |If that solution costs C* and arcs cost at least &, then the
“effective depth” is roughly C*/¢

* Takes time O(b®"4) (exponential in effective depth) C*le “tiers”

* How much space does the fringe take?
 Has roughly the last tier, so O(b®"?)

Is it complete?

* Assuming best solution has a finite cost and minimum arc cost
is positive, yes!

Is it optimal?
* Yes! (Proof next via A*)



The One Queue

* All these search algorithms are the |
same except for fringe strategies L@¢Q¥B0P¥éﬂj- - t—’ﬂj
* Conceptually, all fringes are priority |

qgueues (i.e. collections of nodes with
attached priorities)

* Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

* Can even code one implementation that
takes a variable queuing object

21



Informed Search



Search Heuristics

* A heuristic is:
* A function that estimates how close a state is to a goal
» Designed for a particular search problem
* Pathing?
* Examples: Manhattan distance, Euclidean distance for pathing
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Greedy Search

* Expand the node that seems closest to the goal

L] Mehadia

Arad

raiova Eforie
m .

329

Fagpra> Cocead i
366

380

253 0

* |s it optimal?
* No. Resulting path to Bucharest is not the shortest!
* Why?
* Heuristics might be wrong 24



A* Search: Combining UCS and Greedy

 Uniform-cost orders by path cost, or backward cost g(n)
 Greedy orders by goal proximity, or forward cost h(n)

« A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg ésrenager



When should A* terminate?

* Should we stop when we enqueue a goal?
h=2

O~

h=3 h=0
O, ©
2 (B) 3

h=1
* No: only stop when we dequeue a goal

d
o»)
do
Qo
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\ 4
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N
N
N
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o
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S->B->G505

S->A->G404
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A* Search

A-STAR-SEARCH(problem) a solution, or failure
initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority
add initial state of problem to frontier with priority f(S)=0+h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
for each resulting child from node
add child to the frontier with f(n)=g(n)+h(n)



{a) The initial state PCAmd >

{b) After expanding Arad

WI=140+253 447=1 184329 MO=T5+3T4

{¢) After expanding Sibiu

HN=T5+374

GH6=2804+-366 415=239:1T6 671=291+380 413=22)+193

{d) After expanding Rimnicu Vilcea

HT7=118+329

H9=T5+374

E46=280+266 415=2304176 6T1=201+380

Pitesti

S26=366+160 417=31T+100 553=300+253

{e) After expanding Fagaras

HO=T5+374

591=338+253 450=450+0 S26=366+160 417=317+100 553=300+253

(1) After expanding Pitesti

H9=T5+3T74

501=338+253  450=45040 526=316+160

418=418+0 615=455+160 607=414+193

Timisoara

] Mehadia
75

Dobreta []

Arad
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

= Craiova

366
0
160
242
161
176
77
151
226
244

] Vaslui

Urziceni

[] Giurgiu

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui

Zerind
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s A* Optimal?

h==6

gh+

C

o777
9 J 77

S->A 167

S->G 505

 What went wrong?
* Actual bad goal cost < estimated good goal cost
* We need estimates to be less than actual costs!

29




Admissible Heuristics

* A heuristic h is admissible (optimistic) if
0 < h(n) <h*(n)
where h*(n) is the true cost to a nearest goal

- - 0.0

* Coming up with admissible heuristics is most of what’s involved in
using A* in practice

* Examples:




Optimality of A* Tree Search

* Assume:
* Ais an optimal goal node
* Bis asuboptimal goal node
* his admissible

* Claim:
* A will exit the fringe before B



Optimality of A* Tree Search: Blocking

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)
* Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

f(n) = g(n) + h(n)  Definition of f-cost
f(n) < g(A) Admissibility of h
g(A) = f(A) h =0 at a goal



Optimality of A* Tree Search: Blocking 2

* Proof:
* Imagine B is on the fringe
* Some ancestor n of A is on the fringe,
too (maybe Al)
* Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at a goal



Optimality of A* Tree Search: Blocking 3

* Proof:
* Imagine B is on the fringe

* Some ancestor n of A is on the fringe,
too (maybe Al)

* Claim: n will be expanded before B

1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

* All ancestors of A expand before B
* A expands before B
* A* search is optimal

f(n) < f(A) < f(B)

34



Comparison

==

SCORE: 0

SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

35



Creating Heuristics

YOuUu GOT

HEURISTIL
UFGRADE!

* Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

e Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

* Inadmissible heuristics are often useful too

36



Example: 8 Puzzle

71 2 % 3|7
2

1
5 6 10 5
& 3 1 yo-f-1 2

Start State Actions

* What are the states? <=

* How many states?

* What are the actions?

* How many successors from the start state?
* What should the costs be?

!

p)
3 4|5
6 7 %

Goal State

Admissible
heuristics?

37



Example: 8 Puzzle - 2

e Heuristic: Number of tiles misplaced
* Why is it admissible?

e h(start) = &

* This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 106
TILES 13 39 227

38
Statistics from Andrew Moore



Example: 8 Puzzle - 3

 What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

Start State Goal State

e Total Manhattan distance

Average nodes expanded
when the optimal path has...

* Why is it admissible? .4 steps | ...8 steps | ...12 steps

TILES 13 39 227

e h(start) = 3+1+2+..=18 MANHATTAN 12 25 /3




Example: 8 Puzzle - 4

* How about using the actual cost as a heuristic?
* Would it be admissible?

* Would we save on nodes expanded? g; /t
() NOPE. GaAL!

 What’s wrong with it?

e With A*: a trade-off between quality of estimate and work per node

* As heuristics get closer to the true cost, you will expand fewer nodes but
usually do more work per node to compute the heuristic itself



Constraint Satisfaction Problems



Constraint Satisfaction Problems

N variables
domain D

constraints

states

partial assignment

goal test

complete; satisfies constraints

successor function

assign an unassigned variable

42



What is Search For?

e Assumptions about the world: a single agent, deterministic actions, fully

observed state, discrete state space

* Planning: sequences of actions
* The path to the goal is the important thing
e Paths have various costs, depths
* Heuristics give problem-specific guidance

* |dentification: assignments to variables
* The goal itself is important, not the path
e All paths at the same depth (for some formulations)
* CSPs are specialized for identification problems

43



Constraint Satisfaction Problems

e Standard search problems:
e State is a “black box”: arbitrary data structure
e Goal test can be any function over states
* Successor function can also be anything

* Constraint satisfaction problems (CSPs):
* A special subset of search problems

 State is defined by variables X; with values
from a domain D (sometimes b depends on i)

e Goal testis a set of constraints specifying
allowable combinations of values for subsets
of variables

* Allows useful general-purpose algorithms
with more power than standard search
algorithms 44



Constraint Graphs

* Binary CSP: each constraint relates (at most)
two variables

* Binary constraint graph: nodes are variables,
arcs show constraints @

e General-purpose CSP algorithms use the ww

graph structure to speed up search. E.g.,
Tasmania is an independent subproblem! °




Standard Search Formulation

e Standard search formulation of CSPs

e States defined by the values assigned so
far (partial assignments)
* |nitial state: the empty assignment, {}

e Successor function: assign a value to an
|unassigned variable| —Can be any unassigned variable

* Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

46



Search Methods: DFS

* At each node, assign a value from the
domain to the variable

——
\.\
* Check feasibility (constraints) when A

* What problems does the naive search
have?

[Demo: coloring -- dfs]



Backtracking Search

Backtracking search is the basic uninformed algorithm for
solving CSPs

Backtracking search = DFS + two improvements

Idea 1: One variable at a time

* Variable assignments are commutative, so fix ordering -> better
branching factor!

* |.e., [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
* |.e. consider only values which do not conflict previous assignments
* Might have to do some computation to check the constraints
* “Incremental goal test”

Can solve N-queens for N = 25




Example

- & ¢




BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «<— SELECT_UNASSIGNED_ VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
result «— RECURSIVE_BACKTRACKING(assignment, csp)
result # failure
result
remove {var=value} from assignment
failure



function BACKTRACKING _SEARCH(csp) returns a solution, or failure
return RECURSIVE_BACKTRACKIN csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure
if assignment is complete then No need to check consistency for a
return assignment complete assignment
var «— SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp) | What are choice
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do points?

‘if value is consistent with assignment given CONSTRAINTS[csp] then ‘

add {var=value} to assignment Checks consistency at each assignment
result «— RECURSIVE_BACKTRACKING(assignment, csp)

it result # failure then

return result

remove {var=value} from assignment Backtracking = DFS + variable-ordering +

. fail-on-violation
return failure all-o olatio



Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* |In what order should its values be tried?

 Structure: Can we exploit the problem structure?

52



Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment failure is detected if some variables have no values remaining

WA NT| q
SA INsW
Vv
WA NT Q NSW VvV SA

[Demo: coloring -- forward checking]



Filtering: Forward Checking 2

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

WA NT Q NSW \' SA

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has
most two variables): nodes are variables, edges show constraints  [Demo: coloring -- forward cHecking]



Filtering: Forward Checking 3

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

G W\_L’Q?_F‘\‘ O F‘\_L’?
o

cliPa

@‘@ WA NT Q NSW Vv SA
I I I i irei
— 1 MM iren 1

[Demo: coloring -- forward checking]



Filtering: Forward Checking 4

* Filtering: Keep track of domains for unassigned variables and cross off bad
options

* Forward checking: Cross off values that violate a constraint when added to
the existing assignment

AT W\_L;Q:_""‘\l e —40

@‘@ FAIL — variable with
) WA NT Q NSW vV sa No possible values

O EEEEPE[EIE[ESE[ES =D N
— 1 MM iren 1
— 1 1 [m E[E T ] H|

[Demo: coloring -- forward chlecking]




Filtering: Constraint Propagation

* Forward checking propagates information from assigned to unassigned
variables, but doesn't provide early detection for all failures:

WA NT Q NSW \ SA
NT i I I ICE ICECIrErirerl
‘ A T B PRI EErEEEE] e
kA = IEmL] [ mmem] (m]
—)

* NT and SA cannot both be blue!
 Why didn’t we detect this yet?
* Constraint propagation: reason from constraint to constraint

57



Consistency of A Single Arc

* An arc X — Y is consistent iff for every x in the tail there is some y in the
head which could be assigned without violating a constraint
NSW

‘ V

S—@
@-‘@'éo@
®

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment

NT WA NT Q NSW \ SA
Q

3 e _TEErEErTEEr .

Delete from the tail!
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Arc Consistency of an Entire CSP

* Asimple form of propagation makes sure all arcs are consistent:

NT [i g WA NT Q NSW Vv SA
A o ] N [m _J_=omE] _]

v 1\ w

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking
Can be run as a preprocessor or after each assignment
What's the downside of enforcing arc consistency?

Remember: Delete
from the tail!

59



Arc Consistency of Entire CSP 2

* A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-
consistency, repeating the cycle until no domains change for a whole
cycle

* AC-3 (Arc Consistency Algorithm #3):

* A more efficient algorithm ignoring constraints that have not been modified

since they were last analyzed Ll |
Q
SN @
] ELE
ke ]
\ (v)[EEm

' (7)== )



AC-3(csp) the CSP, possibly with reduced domains
initialize a queue of all the arcs in csp
gueue is not empty
(X;, X;) < REMOVE_FIRST(queue)
REMOVE_INCONSISTENT_VALUES(Xl-,Xj)
for each X, in NEIGHBORSI[X;] do
add (X, X;) to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
delete x from DOMAIN[X;]; removed «— true
removed



AC-3(csp) the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

gueue is not empty
(X;, X;) < REMOVE_FIRST(queue)
[REMOVE_INCONSISTENT_VALUES(Xl-,Xj)] Constraint Propagation!
for each X, in NEIGHBORSI[X;] do
add[(Xk,Xi)]to queue

REMOVE_INCONSISTENT_VALUES(X;, X;) true iff succeeds
removed «— false
each x in DOMAIN[X;]
no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; < X;
delete x from DOMAIN[X;]; removed «— true
removed



function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp e An arcis added after a removal of
while queue is not empty do value at a node
(X;, X;) < REMOVE_FIRST(queue) * nnode in total, each has < d values
[if REMOVE_INCONSISTENT_VALUES(X;, X;) then ] * Total times of removal: O (nd)
for each X;. in NEIGHBORS[X;] do * After aremoval, < n arcs added
[ add (X, X;) to queue J e Total times of adding arcs: 0(n?d)

function REMOVE_INCONSISTENT_VALUES(X;, X;) returns true iff succeeds
removed « false * Check arc consistency per arc: 0(d?)

[for each x in DOMAIN[X;] do ] e Complexity: 0(n?d?)
T no value y in DOMAIN[X;] allows (x,y) to satisfy the constraint X; <> X; then
delete x from DOMAIN[X;]; removed < true * Can be improved to O(n*d?)

return removed ... but detecting all possible future
problems is NP-hard — why?




Example of AC-3

Queue:

SA->WA
NT->WA

Remember: Delete from the tail!

64
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Example of AC-3 2

L

Queue:
SA>WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!
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Example of AC-3 3

L

Queue:
SA>WA
NT>WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

66



Example of AC-3 4

L

NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

67



Example of AC-3 5




Limitations of Arc Consistency

» After enforcing arc consistency: O %
* Can have one solution left %
(- mw

e Can have multiple solutions left
* Can have no solutions left (and not know it)

* Arc consistency still runs inside a
backtracking search!

* And will be called many times

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consis%gency]



BACKTRACKING_SEARCH(csp) a solution, or failure
RECURSIVE_BACKTRACKING({}, csp)

RECURSIVE_BACKTRACKING(assignment, csp) a solution, or failure
assignment is complete
assignment
var «<— SELECT_UNASSIGNED_ VARIABLE(VARIABLES[csp], assignment, csp)
each value in ORDER-DOMAIN-VALUES(var, assignment, csp)
value is consistent with assignment given CONSTRAINTS[csp]
add {var=value} to assignment
AC-3(csp)
result «— RECURSIVE_BACKTRACKING(assignment, esp)
result # failure,
result
remove {var=value} from assignment
failure



Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

 Structure: Can we exploit the problem structure?

71



Ordering: Minimum Remaining Values

* Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

==

* Why min rather than max?
e Also called “most constrained variable”
* “Fail-fast” ordering




Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value

* Given a choice of variable, choose the least constraining
value

* |l.e., the one that rules out the fewest values in the
remaining variables

* Note that it may take some computation to determine
this! (E.g., rerunning filtering)

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible



Improving Backtracking

* General-purpose ideas give huge gains in speed
* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next?
* |In what order should its values be tried?

e Structure: Can we exploit the problem structure?

74



Problem Structure

* For general CSPs, worst-case complexity with backtracking
algorithm is O(d")

* When the problem has special structure, we can often solve
the problem more efficiently

e Special Structure 1: Independent subproblems
* Example: Tasmania and mainland do not interact
* Connected components of constraint graph

e Suppose a graph of n variables can be broken into
subproblems, each of only ¢ variables:

» Worst-case complexity is O((n/c)(d®)), linear in n
* Eg,n=80,d=2,c=20

e 280 =4 billion years at 10 million nodes/sec

* (4)(22%°) = 0.4 seconds at 10 million nodes/sec




Tree-Structured CSPs

(80
C F)

* Theorem: if the constraint graph has no loops, the CSP can be solved in O(nd?)
time
 Compare to general CSPs, where worst-case time is O(d")
* How?

* This property also applies to probabilistic reasoning (later): an example of the
relation between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs 2

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

A E)
8)—0;
© ()




Tree-Structured CSPs 3

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

* Algorithm for tree-structured CSPs:
+ Order: Choose a root variable, order variables so that parents precede children
- - (AHBHC)XDHE)NF
* Remove backward: F 1: 2, apply RemovMent(Parent(X &) . .
[ ] [ [ ] [ ]
: - HE B HE B B

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X))

78



Tree-Structured CSPs 4

e Algorithm for tree-structured CSPs:
e Order: Choose a root variable, order variables so that parents precede children

» STV

[l
* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X,)
* Assign forward: For i = 1:n, assign X, consistently with Parent(X,)

Remove backward 0(nd?) : 0(d?) per arc and O(n) arcs
* Runtime: 0 (nd?) (why?) Assign forward O(nd): O(d) per node and 0(n) nodes

* Can always find a solution when there is one (why?) 79



Tree-Structured CSPs 5

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

80



Tree-Structured CSPs 6

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once

* a. Parent(X;) — X; was made consistent when X; was visited

* When X; was visited, we enforced arc consistency of Parent(X;) — X; by reducing the domain
of Parent(X;). By definition, for every value in the reduced domain of Parent(X;), there was
some x in the domain of X; which could be assigned without violating the constraint involving
Parent(X;) and X;

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass



Tree-Structured CSPs 7

* Remove backward: For i = n: 2, apply Removelnconsistent(Parent(X;),X;)

e Claim 1: After backward pass, all root-to-leaf arcs are consistent
* Proof: During backward pass, every node except the root node was “visited” once.
* a. Parent(X;) — X; was made consistent when X; was visited

* b. After that, Parent(X;) — X; kept consistent until the end of the backward pass

* Domain of X; would not have been reduced after X; is visited because X;’s children were
visited before X;. Domain of Parent(X;) could have been reduced further. Arc consistency
would still hold by definition.
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Tree-Structured CSPs 8

* Assign forward: For i=1:n, assign X; consistently with Parent(X;)

* Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

* Proof: Follow the backtracking algorithm (on the reduced domains and with the same
ordering). Induction on position Suppose we have successfully reached node X;. In the
current step, the potential failure can only be caused by the constraint between X; and
Parent(X;), since all other variables that are in a same constraint of X; have not
assigned a value yet. Due to the arc consistency of Parent(X;) — X;, there exists a
value x in the domain of X; that does not violate the constraint. So we can successfully
assign value to X; and go to the next node. By induction, we can successfully assign a
value to a variable in each step of the algorithm. A solution is found in the end.



Local Search




Local Search

e Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* Typically use a complete-state formulation
e e.g., all variables assigned in a CSP (may not satisfy all the constraints)

* Different “ -
* An assignment is means that all variables are assigned a value
* An algorithm is means that it will output a solution if there exists

one



iterative Algorithms for CSPs

* To apply to CSPs:
* Take an assignment with unsatisfied constraints
* Operators reassign variable values
* No fringe! Live on the edge.

* Algorithm: While not solved,

* Variable selection: randomly select any
conflicted variable
* Value selection: min-conflicts heuristic
* Choose a value that violates the fewest constraints

* v.s., hill climb with h(x) = total number of violated
constraints (break tie randomly)




Example: 4-Queens

h=2

e States: 4 queens in 4 columns (44 = 256 states)
* Operators: move queen in column

* Goal test: no attacks

* Evaluation: h(n) = number of attacks

87



Performance of Min-Conflicts

* Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)!

* The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

o number of constraints
number of variables

/N

|
crltlcal 88
ratio

CPU
time




Local Search vs Tree Search

* Tree search keeps unexplored alternatives on the fringe (ensures
completeness)

* Local search: improve a single option until you can’t make it better
(no fringe!)

* New successor function: local changes

| o

1999

* Generally much faster and more memory efficient (but incomplete
and suboptimal)

89



Example

* Local search may get stuck in a local optima




Hill Climbing

e Simple, general idea:
* Start wherever
* Repeat: move to the best neighboring state
* |f no for current, quit

* What’s bad about this approach?
Complete? No!

Optimal? No!

* What’s good about it? <

91



Hill Climbing Diagram
In identification problems, could be a function measuring how close you are to a

valid solution, e.g., —1 X #conflicts in n-Queens/CSP
lobjective function lobal maximum

What’s the difference between
shoulder and flat local maximum

shoulder (both are plateau)?

N

local maximum

"flat" local maximum

»state space

current
state

92



Objective Function

Quiz ‘ /\

State Space
-

X A B CY D E £

e Starting from X, where do you end up ?
e Starting from Y, where do you end up ?
e Starting from Z, where do you end up ?

93



Hill Climbing (Greedy Local Search)

function HILL-CLIMBING( problem) returns a state that is a local maximum

current «+— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor < a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current < neighbor

How to apply Hill Climbing to n-Queens? How is it different from Iterative Improvement?

Define a state as a board with n queens on it, one in each column
Define a (neighbor) of a state as one that is generated by moving a
single queen to another square in the same column

94



Hill Climbing (Greedy Local Search) 2
A

function HILL-CLIMBING( problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE) What if there is a tie?
lOOf) do '
7

eighbor < a highest-valued successor of current Typically break ties randomly
if neighbor. VALUE < current. VALUE thenfreturn current.STATE |
current < neighbor

What if we do not stop here?

* In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
* Takes 4 steps on average when it succeeds, and 3 steps when it fails

* When allow for <100 consecutive sideway moves, solves 94% of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

95



Local Search: Summary

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
* Do not maintain a search tree or multiple paths
* Typically do not retain the path to the node

* Advantages
e Use little memory

e Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution



Adversarial Search

Cost -> Utility!




“Standard” Games

e Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

 Game formulation:
* States: S (start at s)
e Players: P={1...N} (usually take turns)
* Actions: A (may depend on player / state)
* Transition Function: SXA — S
 Terminal Test: S — {t,f}
e Terminal Utilities: SxP — R

* Solution for a player is a policy: S —> A

98



Single-Agent Trees: Value of a State

-

-

Value of a state:
The best achievable
outcome (utility)
from that state

J

<
/\

T T~ T T~
Ol B B

Non-Terminal States:
V(s)= max V(s)

s’ €children(s)

Terminal States:

V(s) = known 99



Adversarial Game Trees: Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s') V(s') = min V(s)
s’ Esuccessors(s) s€successors(s’)

Terminal States:
V(s) = known 100



Minimax Search

Minimax values:

* Deterministic, zero-sum games: computed recursively

e Tic-tac-toe, chess, checkers
* One player maximizes result max
 The other minimizes result

min
* Minimax search:
* A state-space search tree / \ / \
* Players alternate turns / \ / \
* Compute each node’s minimax value: the best 8 2 5 6
achievable utility against a rational (optimal)
adversary Terminal values:

part of the game

101



Minimax Implementation (Dispatch)

/def max-value(state): \
initialize v = -0
for each successor of state:
v = max(v, value(successor))

returnv

(U /

/def min-value(state): N
initialize v = +oo
for each successor of state:
v = min(v, value(successor))

returnv
4

102



Example

e Actions?




Pseudocode for Minimax Search

def max_value(state):
V(s) = max V(s"),
if state.is_leat: a

return state.value where s’ = result(s, Cl)
# TODO Also handle depth limit

best_value = -10000000 a = argmax V(s'),
a
for action in state.actions: whereS' — result(s, Cl)

next_state = state.result(action)

next_value = min_value(bext_state)

if next_value > best value:
best_value = next_value

return best_value

def min_value(state): 104



Quiz
* Minimax search belongs to which class?

A) BFS
B) DFS
C) UCS
D) A*



Minimax Efficiency

* How efficient is minimax?
* Just like (exhaustive) DFS
* Time: O(b™)
e Space: O(bm)

 Example: For chess, b = 35, m = 100
* Exact solution is completely infeasible
* But, do we need to explore the whole tree? =
* Humans can’t do this either, so how do we play chess?
* Bounded rationality — Herbert Simon

106



Resource Limits: Game Tree Pruning

The order of generation matters: more pruning
is possible if good moves come first

107



Game Tree Pruning: Alpha-Beta Pruning

* General configuration (MIN version)

MAX
* We're computing the MIN-VALUE at some node n
* We're looping over n’s children MIN
* n’s estimate of the childrens’ min is dropping :
* Who cares about n’s value? MAX
* Let a be the best value that MAX can get at any choice
point along the current path from the root MAX

* |f n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad MIN
enough that it won’t be played)

* MAX version is symmetric



Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state, a, B):
initialize v = -0 initialize v = +oo
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, ))
if v> B returnv ifv<areturnv
a = max(a, v) B =min(B, v)

return v return v
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Quiz

Which branches are pruned? /\

(Left to right traversal)
(Select all that apply)

TN

10

50

110



Quiz 2

Which branches are pruned?

(Left to right traversal)

A) e,
B) g,

C)g, Kk, |
D) g, n

) 4

d

i

/5

/N

AN

100

8

) &

'/

"/

3

20

N
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Quiz 2 -1

>=100

NN

10 6 100 8 1 20




Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong max
* Important: children of the root may have the wrong value

min

Good child ordering improves effectiveness of pruning

e With “perfect ordering”: v
e Time complexity drops to O(b™/2) 10 10 0
* Doubles solvable depth!
* Chess: 1M nodes/move => depth=8, respectable
* Full search of complicated games, is still hopeless...

e This is a simple example of metareasoning (computing about what to compute)



Depth-limited search

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
* Instead, search only to a limited depth in the tree

* Replace terminal utilities with an evaluation function for non-
terminal positions

Example:
* Suppose we have 100 seconds, can explore 10K nodes / sec
* So can check 1M nodes per move
* For chess, b = 35 so reaches about depth 4 — not so good
* o-f3 reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG difference
Use iterative deepening for an anytime algorithm

v

VANWAN
VANIWAN

114
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maX

Expectimax Search

chance

Why wouldn’t we know what the result of an action will be?
* Explicit randomness: rolling dice
* Unpredictable opponents: the ghosts respond randomly
 Unpredictable humans: humans are not perfect 10 |10 9 100
* Actions can fail: when moving a robot, wheels might slip

Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax)
outcomes

Expectimax search: compute the average score under optimal play
* Max nodes as in minimax search
* Chance nodes are like min nodes but the outcome is uncertain
* Calculate their expected utilities
 |.e. take weighted average (expectation) of children

Later, we'll learn how to formalize the underlying uncertain-result problems as Markov
Decision Processes

[Demo: min vs exp (L7D1,2)]



Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state): def exp-value(state):
initialize v = -0 initialize v=20
for each successor of state: < > for each successor of state:
v = max(v, value(successor)) p = probability(successor)

return v v += p * value(successor)
return v

116



Expectimax Pseudocode 3

function value( state)
e if state.is leaf
e return state.value

e if state.player is MAX

e return max value( state.result(a) )

a in state.actions
e if state.player is MIN

e return min value( state.result(a) )

a in state.actions

e if state.player is CHANCE

e return sum P(s) *value(s)

s in state.next_states

117



Example

15




Quiz

Expectimax tree search:

Left

Which action do we
choose?

A: Left

B: Center

C: Right 1/4
D: Eight 1/4

4
12 8

Center

Right

1/3

12

2/3




Quiz 2

Expectimax tree search:
Which action do we | 4t
choose?

3+2+2=7

4 1/2

C: Right */

1/4

\ 4
12 3

Center

4+3=7

1/2

Right

4+4=8

1/3

12

2/3




Expectimax: Depth-Limited

O

400

300

%»‘34

E]

]

~

Estimate of true
expectimax value
(which would
require a lot of
work to compute)J

492

362




Quiz: Informed Probabilities

* Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

* Question: What tree search should you use?

* Answer: Expectimax!

 To figure out EACH chance node’s probabilities,

QQO * This kind of thing gets very slow very quickly
0.1 0.9 : .
 Even worse if you have to simulate your

opponent simulating you...

A A A A e ... except for minimax and maximax, which
have the nice property that it all collapses into
one game tree

O°"

This is basically how you would model a human, except for their utility: their utility might be the
same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a
slightly different utility (like another person navigating in the office)



Dangerous Pessimism/Optimism

Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

123



Assumptions vs. Reality

Adversarial Ghost Random Ghost
Minimax Won 5/5 Won 5/5
Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5
Pacman Avg. Score: -303 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble

Ghost used depth 2 search with an eval function that seeks Pacman ,
[Demos: world assumptions (L7D3,4,5,6)]



MEU Principle

Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

* Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

U(A) >U(B) & A= B
U(lp1,S1; --- 1 pn,Sn]) = > 0;U(S;)

* j.e. values assigned by U preserve preferences of both prizes and lotteries!

* Maximum expected utility (MEU) principle:
* Choose the action that maximizes expected utility

* Note: an agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities

* E.g., alookup table for perfect tic-tac-toe, a reflex vacuum cleaner

125



Markov Decision Processes



Markov Decision Processes

* An MDP is defined by:

e Asetofstatess €S
e Asetof actionsa € A
e A transition function T(s, a, s’)

* Probability that a from s leads to s/, i.e., P(s’| s, a)
e Also called the model or the dynamics

* Areward function R(s, a, s’)
* Sometimes just R(s) or R(s’)

* A start state

* Maybe a terminal state

 MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
* WEe’'ll have a new tool soon

[Demo — gridworld manual ir%%?o (L8D1)]



What is Markov about MDPs?

* “Markov” generally means that given the present state, the
future and the past are independent

* For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(St+1 = 8’|5t — StaAt — Ay, St—1 = 8t—1,At—1, ...50 = So)

Andrey Markov
P(St_|_1 — S’|St = Sy, A, = CLt) (1856-1922)

* This is just like search, where the successor function could only
depend on the current state (not the history)
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Policies

* |n deterministic single-agent search problem:s,
we wanted an optimal plan, or sequence of
actions, from start to a goal

* For MDPs, we want an optimal
policy t*: S -5 A

* A policy & gives an action for each state

* An optimal policy is one that maximizes
expected utility if followed

* An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03 for
all non-terminals s
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Optimal Policies

o
o™
i




MDP Search Trees

 Each MDP state projects an expectimax-like search tree

A S a S iS a state

-
a
o

£

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

N\
72



Utilities of Sequences: Discounting

e How to discount?

* Each time we descend a level, we multiply in the ~ .
discount once
<
* Why discount? g ’
 Reward now is better than later _ A /

* Can also think of it as a 1-gamma chance of ending ¢
the process at every step ")/ 2

* Also helps our algorithms converge

* Example: discount of 0.5

2
e U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3 ﬁ YOS

* U([1,2,3]) < U([3,2,1])




Utilities of Sequences: Stationary Preferences

* Theorem: if we assume stationary preferences:
[al, as, .. ] — [bl, ba, .. ]

)

ray,a9,...] = |r,bi,ba, .. ]

%
L

e

* Then: there are only two ways to define utilities

- Additive utility: U ([rg,r1,72,...]) =10+ 11 + 72
» Discounted utility:  U([rg,71,72,...]) =rg+ yr1 + f},erQ .

133



Quiz: Discounting

* Given: 10 1

a b G d e
» Actions: East, West, and Exit (only available in exit states a, €)

* Transitions: deterministic

* Quiz 1: For y =1, what is the optimal policy? 10| < | < | <

* Quiz 2: Fory = 0.1, what is the optimal policy? 10| < | « | »

* Quiz 3: For which y are West and East equally good when in state d?

1y=10 y3



Infinite Utilities?!

* Problem: What if the game lasts forever? Do we get infinite rewards?

e Solutions:

* Finite horizon: (similar to depth-limited search)
* Terminate episodes after a fixed T steps (e.g. life)
* Gives nonstationary policies (mr depends on time left)

* Discounting:use0<y<1
U([ro,...700]) = > Y1y < Rmax/(1 — )
t=0
* Smaller y means smaller “horizon” — shorter term focus

* Absorbing state: guarantee that for every policy, a terminal state will eventually be
reached (like “overheated” for racing)
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Racing Search Tree

* We're doing way too much work =
with expectimax! ?/7\‘
a & &
* Problem: States are repeated
* Idea: Only compute needed quantities
once & & & & & é P Y

& e & @ @ @
* Problem: Tree goes on forever fl fl m fl fl m fl m

* |dea: Do a depth-limited computation, |l N

but with increasing depths until : r
change is small
* Note: deep parts of the tree eventually

y
don’t matterify<1
Y THTREETILLL U CREM LI LN T

e
—
—
e
—
—e
———r
—
—
e
e
Re———
=

—_——
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Optimal Quantities

* The value (utility) of a state s:

* V*(s) = expected utility starting in s and
acting optimally

* The value (utility) of a g-state (s,a):

* Q*(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

* The optimal policy:
* 1*(s) = optimal action from state s

Sis a
state

(s, a)is a
g-state

(s,a,s’) is a
transition

137



Values of States

* Fundamental operation: compute the (expectimax) value of a statiS
» Expected utility under optimal action e
* Average sum of (discounted) rewards
* This is just what expectimax computed!

* Recursive definition of value:

V*(s) = max Q" (s,a)
Q*(s,a) :Z T(s,a,s")[R(s,a,s")+ 7 V*(s')]
V*(s) = m}XZT(S, 2,8 )[R(s,a,5") + 4 V*(s))]

/’/ ?
"8,a,8



Time-Limited Values :

e Key idea: time-limited values

* Define V,(s) to be the optimal value of s if the game ends in k more time
steps
* Equivalently, it’s what a depth-k expectimax would give from s

& Va( &)
v 7\A
@ e~ > >
o o o \‘3

139
[Demo — time-limited values (L8D4)]



Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

/ / / \\
Vit1(s) « max P T(s,0.8) [R(s.a. ) +9Vi(H] -
S

Repeat until convergence, which yields V*

Complexity of each iteration: O(S%A)

Theorem: will converge to unique optimal values
* Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do
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Example

Fast 05 +2

S: 1
Vi F: .5*2+.5%2=)

Overheated
+2

Assume no discount!

0 J Vieg1(s) « mC{:IXZT(s, a,s’) [R(s, a,s’) + 'ka(s’)]

S
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Convergence

How do we know the V, vectors are going to converge? Vi(s) Via1(s)

Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

Case 2: If the discount is less than 1

Proof Sketch:

* For any state V, and V,,, can be viewed as depth k+1
expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,,, has actual

rewards while V, has zeros / \ /
* That last layer is at best all Ry,

* Itis at worst Ry,

* But everything is discounted by yk that far out
* SoV, andV,,, are at most y* max|R| different
* So as k increases, the values converge



Value lteration (Revisited)

* Bellman equations characterize the optimal values:
* _ / / * /
V*i(s) = maaxZ,T(s,a,s) {R(s,a,s )+~ V(s )}

S

* Value iteration computes them:

Vier1(s) <+ m(?XZT(S’ a,s') {R(s,a, s + W/Vk(s')}

* Value iteration is just a fixed point solution method

* ... though the V;, vectors are also interpretable as
time-limited values
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The Bellman Equations

= max Q*(s,a)

Q*(s,a) :Z T(s,a,s")[R(s,a,s")+ 7 V*(s')]
V*(s) = max Y T(s,a,5)[R(s,a,s") +7V"(s)]



Policy Extraction: Computin 1]
y P gnlll

Actions from Values

* Let’s imagine we have the optimal values V*(s)

e How should we act?

* |t’s not obvious!

* We need to do a mini-expectimax (one step)

7 (s) = arg QﬂaXZT(s, a,s')[R(s,a,s) +~vV*(s)]

8/
* This is called policy extraction, since it gets the policy implied by the
values
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Policy Extraction: Computing
Actions from Q-Values

* Let’s imagine we have the optimal
g-values:

* How should we act?
* Completely trivial to decide!

7m*(s) = argmax Q*(s,a)

* Important lesson: actions are easier to select from g-values than
values!
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Problems with Value Iteration

* Value iteration repeats the Bellman updates:
Vig1(s) < max > T(s,a,5') |R(s,a,5") + v V(s

S

* Problem 1: It’s slow — O(S?A) per iteration
* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values



Policy Iteration

* Alternative approach for optimal values:

* Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

* Step 2: Policy Improvement: update policy using one-step look-ahead with
resulting converged (but not optimal!) utilities as future values

* Repeat steps until policy converges

* This is Policy lteration
* It’s still optimall
e Can converge (much) faster under some conditions
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Policy Evaluation: Fixed Policies

Do the optimal action Do what r says to do

/’/ 7
8,4,

.
A s
* Expectimax trees max over all actions to compute the optimal values

* If we fix some policy rt(s), then the tree would be simpler — only one action per
state

e ... though the tree’s value would depend on which policy we fixed 149



Policy Evaluation: Utilities for a Fixed Policy

* Another basic operation: compute the utility of a state s under a A
fixed (generally non-optimal) policy 7(s)

s, T(S)

* Define the utility of a state s, under a fixed policy n:

V™(s) = expected total discounted rewards starting in s and following © ’
57 (8),8

* Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)[R(s,7(s),8) + V()]
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Policy Evaluation: Implementation

 How do we calculate the V’s for a fixed policy ©?

* |dea 1: Turn recursive Bellman equations into updates
(like value iteration)

V(;T(S) =0 ‘,S;'&/(S),S’

Vig1(8) < ZT(S,T&'(S), sH[R(s,7(s),s") + VI (s)]

* Efficiency: O(S?) per iteration

* |ldea 2: Without the maxes, the Bellman equations are just a linear system
* Solve with MATLAB (or your favorite linear system solver)



Policy Iteration

e Evaluation: For fixed current policy m, find values
with policy evaluation:

* Iterate until values converge:

Vit 1 (s) < Y T(s,mi(s),s') |R(s,mi(s),s") + v V(s

* Improvement: For fixed values, get a better (why? exercise) policy
using policy extraction

* One-step look-ahead:

m;+1(s) = arg CEnaXZT(s, a,s) [R(s, a,s) + 7/\/’”@'(3')}

S
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Value Iteration vs. Policy Iteration

Both value iteration and policy iteration compute the same thing (all optimal
values)

In value iteration:
* Every iteration updates both the values and (implicitly) the policy
* We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

* We do several passes that update utilities with fixed policy (each pass is fast because
we consider only one action, not all of them)

» After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be (or we're done)

Both are dynamic programs for solving MDPs



Reinforcement Learning



What Just Happened?

* That wasn’t planning, it was learning!
» Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

. : you have to try unknown actions to get information
. . eventually, you have to use what you know

. . even if you learn intelligently, you make mistakes

. : because of chance, you have to try things repeatedly

. : learning can be much harder than solving a known MDP

155



Reinforcement Learning

* What if we didn’t know P(s’|s,a) and R(s,a,s’)?
Value iteration: Vier1(s) = maXE Rl [Rsrer ™) + vV (s))], Vs
Q-iteration: Qi+1(s,a) = ZW [ResserS) + y max Q,(s',a")], Vs,a
Policy extraction: Ty (s) = argcrlnaXZW[m +yV(s')], Vs
Policy evaluation: VE(s) = Z M[W + yVE(s")], Vs
Policy improvement: Tpew (8) = ;;g;naxzwrm[m 4+ yVToud(s")], Vs
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Reinforcement Learning 2

Agent

State: s
Reward: r

Actions: a

Environment

* Basic idea:
* Receive feedback in the form of rewards
* Agent’s utility is defined by the reward function
* Must (learn to) act so as to maximize expected rewards
e All learning is based on samples of outcomes!
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Reinforcement Learning 3

e Still assume a Markov decision process (MDP):
* Asetof statess € S
* A set of actions (per state) A
A model T(s,a,s’)
* A reward function R(s,a,s’)

Overheated

e Still looking for a policy m(s)

* New twist: don’t know T or R
* |.e. we don’t know which states are good or what the actions do
* Must actually try actions and states out to learn

158



Offline (MDPs) vs. Online (RL)

&

g S

Offline Solution Online Learning




Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
 Model-based Passive RL

* Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

 Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
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Model-Based Reinforcement Learning

e Model-Based Idea:

* Learn an approximate model based on experiences
e Solve for values as if the learned model were correct

e Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of 7'(s, a,s’)
« Discover each R(s,a,s’) when we experience (s, a, s’)

e Step 2: Solve the learned MDP

* For example, use value iteration, as before

(and repeat as needed) 161



Example: Model-Based RL

Input Policy m

Assume:y=1

Observed Episodes (Training)

Episode 1

N

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 3

N

(E, north, C, -1

C,east, D, -1
D, exit,

X, +10

~

J

Episode 2

N

g B, east, C, -1

C, east, D, -1
D, exit, x, +10

~

J

Episode 4

N

g E, north, C, -1

C, east, A, -1
A, exit, x,-10

~

J

Learned Model

T(s,a,s")

4 T(B, east, C) =1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

-

~

)

R(s,a,s")

4 R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

-

~

)
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Analogy: Expected Age

Goal: Compute expected age of students

4 Known P(A) A
E[A]=) P(a)-a =035x20+...
- . Y
Without P(A), instead collect samples [a,, a,, ... 3]
Unknown P(A): “Model Based” Unknown P(A): “Model Free”
Why does this 3 _ num(a) Why does this
P(a) =

work? Because N E[A] ~ i Za" work? Because
eventually you A TN & samples appear
learn the right E[A] ~ Z P(a)-a ' with the right

model. z / K frequencies.




Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

 Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
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Passive Model-Free Reinforcement Learning

 Simplified task: policy evaluation
* Input: a fixed policy 7t(s)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
e Goal: learn the state values

* In this case:
* Learner is “along for the ride”

and learn from experience
* This is NOT offline planning! You actually take actions in the world
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Direct Evaluation

e Goal: Compute values for each state under ©t

* |dea: Average together observed sample values

e Act accordingtom

* Every time you visit a state, write down what the sum of discounted rewards
turned out to be

* Average those samples

* This is called direct evaluation
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Example: Direct Evaluation

Input Policy & Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 N B, east, C, -1 A
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
\ NG J
Episode 3 Episode 4
g E, north, C, -1 N ([ E, north, C, -1 A
C,east, D, -1 C,east, A -1
Assume:y =1 D, exit, x, +10 A, exit, x,-10 If B.and £ both go to C
\_ ) U ) under this policy, how can

their values be different?



Problems with Direct Evaluation

Output Values

* What’s good about direct evaluation?
* |t's easy to understand

* |t doesn’t require any knowledge of T, R

* |t eventually computes the correct average values,
using just sample transitions

 What bad about it?

e |t wastes information about state connections
* Each state must be learned separately

If Band E both go to C
under this policy, how can
* So, it takes a long time to learn their values be different?
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Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
e Value learning — learns value of ; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

 Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
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Why Not Use Policy Evaluation?

* Simplified Bellman updates calculate V for a fixed policy:
* Each round, replace V with a one-step-look-ahead layer over V

Vg'(s) =0 P
Vk—l—l(S) < ZT(S 71'(3) 3,)[R(S ﬂ_(s) 8/) ‘|"YV]€7T(S/)] p .

S

m(s)

S n(S) s’

A s
* This approach fully exploited the connections between the states
e Unfortunately, we need T and R to do it!

* Key question: how can we do this update to V without knowing T and R?
* In other words, how do we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation? I/E\'t

* We want to improve our estimate of V by computing these averages:
Vig1(8) < Z,T(S,T('(S), sH[R(s,7(s),s") + VI (s)]
* |dea: Take sarrS1pIes of outcomes s’
(by doing the action!) and average
sample; = R(s,m(s),s7) + vV (s})
samples = R(s,7(s), s5) + 7V (sh)

samplen = R(s,7(s),s),) + YV (s},)

Almost! But we can’t

1 rewind time to

0 . get sample
Vl-c-l-l (s) < n Z sample; after sample from state s
2
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Temporal Difference Value Learning

S
* Big idea: learn from every experience!

« Update V(s) each time we experience a transition (s, a, s/, r) n(s)

e Likely outcomes s’ will contribute updates more often s, Tt(s)
* Temporal difference learning of values A s

* Policy still fixed, still doing evaluation!
* Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,7(s),s) +~4V™(s)
Update to V(s): VT(s) «+ (1 —a)V"(s) 4+ (a)sample

Same update: VT(s) «+ V™ (s) + a(sample — V" (s))
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Example: Temporal Difference Value Learning

States

Observed Transitions

[ B, east, C, -2 1 [ C, east, D, -2 1

EX1DEIEIE)

V7(s) = (1 = a)V7(s) +a |R(s,m(s),s) +4V7(s")



Problems with TD Value Learning

e TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

* However, if we want to turn values into a (new) policy, we’re sunk:

m(s) = argmaxQ(s,a)

Q(s,a) = ZT(S, a,s') [R(s, a,s’) + ’)/V(S,)}

* |dea: learn Q-values, not values
* Makes action selection model-free too!




Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL
e Learn the MDP model from experiences, then solve the MDP

e Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
e Qlearning —learns Q values of (uses a Q version of TD Learning)

 Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)
* Key challenges:

* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning



Q-Value Iteration

 Value iteration: find successive (depth-limited) values
* Start with V,(s) = 0, which we know is right
* GivenV,, calculate the depth k+1 values for all states:

Vip1(s) < max > T(s,a,s") |R(s,a,8") + V()

e But Q-values are more useful, so compute them instead
* Start with Qg(s,a) = 0, which we know is right
* Given Q, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning

* Q-Learning: sample-based Q-value iteration
Qt1(s,a) - Y T(s,0,8) |R(s.,5) +7 maxQy(s',a')

* Learn Q(s,a) values as you go qubqu
* Receive a sample (s,a,s',r) AA
* Consider your old estimate: Q(s, a)

* Consider your new sample estimate: longer policy M.M |

sample = R(s,a,s’) + ~ max Q(s',a’) evaluation! PXX

* Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworll7d7 (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy --
!

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
* ... but not decrease it too quickly
e Basically, in the limit, it doesn’t matter how you select actions (!)
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Reinforcement Learning -- Overview

* Passive Reinforcement Learning (= how to learn from experiences)
* Model-based Passive RL

e Learn the MDP model from experiences, then solve the MDP

* Model-free Passive RL

* Forego learning the MDP model, directly learn V or Q:
* Value learning — learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
* Qlearning —learns Q values of the optimal policy (uses a Q version of TD Learning)

* Active Reinforcement Learning (= agent also needs to decide how to
collect experiences)

* Key challenges:
* How to efficiently explore?
* How to trade off exploration <> exploitation

* Applies to both model-based and model-free.
we’ll cover only in context of Q-learning
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Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
* You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
* You choose the actions now
* Goal: learn the optimal policy / values

* In this case:
* Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and find
out what happens...
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Exploration vs. Exploitation

b7

GRAND

T
o)
=5




How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
e With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

* Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower ¢ over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grig (L10D5)]
[Demo: Q-learning — epsilon-greedy -- crawller (L10D3)]



A commonly used ‘exploration function’ is

Exploration Functions — /m = c/loe(t/o) /n, which i

derived by Chernoff-Hoeffding inequality
and J is confidence level

* When to explore?

 Random actions: explore a fixed amount

* Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function

* Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u n) = u + k/n

Regular Q-Update: Q(s,a) < R(s,a,s") —I—q/max Q(s',a")
. Modified Q-Update: Q(s,a) < (s, a, 8)+fyma><f(62(8 a'), N(s',a"))

* Action selection: Use a « argmax, Q(s,a)
* Note: this propagates the “bonus” back to states that lead to unknown states as well!

183
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The Story So Far: MDPs and RL

Known MDP: Offline Solution

~

&

Goal

Compute V*, Q*, n*

Evaluate a fixed policy &

Technique

Value / policy iteration

Policy evaluation

/

Unknown MDP: Model-Based

-

Goal

Compute V*, Q*, n*

Evaluate a fixed policy ©t

\

Technique

~

VI/PIl on approx. MDP

PE on approx. MDP

/

Unknown MDP: Model-Free
4 I
Goal Technique
Compute V*, Q*, n* Q-learning

o

Evaluate a fixed policy ©

Value Learning

/




Linear Regression



Linear regression

e Use linear relationship to approximate the function of Y on X

* How to select the most appropriate linear model?
* Error: Mean squared error (MSE)

1 <& .
MSE = — Y: — Y;)?
- ;Zlﬁ( )

e Where Y and Y are the true values and predicted values respectively

* Find the linear model with the smallest MSE



Question

* Given the dataset {(1,1), (2,4), (3,5)} and the linear model Y = 2X +
1

* What is the mean squared error?

* The predicted points are (1,3),(2,5), (3,7)
* So the mean squared error (MSE) is % (22+1%2+2%) =3



How to get linear model with minimal MSE

* MSE for model parameter 6:

1
J©) =5 ) (= 07x)?
=1

* Find an estimator 8 to minimize J(6)

*y=0Tx+b+e. Thenwe canwritex’ = (1,x1,...,x%),0 =
(b,04,...,0,),theny =0"x" + ¢

* Note that J(8) is a convex function in 8, so it has a unique minimal
point



Interpretation

Sum of squares error contours for linear regression

5 3 :
prediction ‘ : :
4+, truth 25}~
3l of ~f
20 15F-
1r ‘_;. 1
or 0.5}
-1 ot
2 05
_3 1 1 1 1 1 1 1 ]
-4 -3 -2 -1 0 1 2 3 4 -1 :
-1 0 1 2 3
w0
(a) (b)

Figure credit: Kevin Murphy 189



J(8) is convex

A Check it by yourself !

* f(x) = - X)2= (x — y)2 IS convex in x

* g(8) = f(0"x)
9((1 = )6, + t6,)
— f ((1 _ t)elTx T tHZTx) 2 Convexity of f
< (1 -0f(6;'x) +tf(6;"x)
= (1—-1t)g(61) +tg(6;)

e The sum of convex functions is convex
* Thus J(6) is convex
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Minimal point (Normal equation)

aj(0) _ T T
° 38 Z 1(9 Xi — YL)XL — 1(xx H_xlyl)
* Letting the derivative be zero
N N
T _
z xix; |10 = z X;Yi
ol | [x o x® V1
clfwewriteX =1|: | = : ,y =1 |, then
xn | |xn xf\l,_ VN




Minimal point (Normal equation) (cont.)

c XTX0 = XTy
 When X "X is invertible

6=X"X)"1xTy

)eudo—inverse
6=xTX)"xT
1 ,

e When X "X is not invertible

* E.g. The pseudo-inverse of

2

IS

y

1
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Question

 Given the dataset

(1,1), (2,4), (3,5)
compute the normal equation for 8, solve 8 and compute the MSE

X'l 1 1 ﬁzXTy

1 1 17
X=|x,|=[1 2|,y=|4
x] 1 3. 5.
T v 3 61 1. [10
XX_[ 14]’X3’_[24

[2 164] rgj B B?L

0 = [—%,2],)/ = —§+2x. MSE=§
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Motivation — large dataset

18

0 — (XTX)—1XTy 1ab N\

* Recall the objective is to minimize the
loss function L(6)

: : : : I

81

1 _ X
L(§) = J(8) = Nz(yl' —9Tx)? N S

* Gradient descent method — o en;weold
earning rate
\ AL (0)

enew A 901d — 784



(Batch) gradient descent

N

« fo(x) = 0T x 70) = — i~ fo@)?  minJ(6)

1=1 d
. (6)
o0

* Update Onew < Oo1a — 71 for the whole batch

N
T - 23 i fatai 2

1=1 195



Stochastic gradient descent

? _ _ _ 1 ?
IO = = folw))® min gy JUO)

* Update Ohew = Oo1q — nan’;(a) for|every single instance
0™ (6) 0 fo(x:)

= —(yi — fo(x;))x;
Onew = Oold + n(yi — fo(xi))zi

* Compare with BGD
* Faster learning
* Uncertainty or fluctuation in learning
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Mini-Batch Gradient Descent

A combination of batch GD and stochastic GD

 Split the whole dataset into K mini-batches

1,2,3,....K}

*|For each mini-batch k,|perform one-step BGD
towards minimizing

JH)(9) =

1 O

Tk 1=1
0J k) (9)
06

(yi — fo(zs))?

* Update Opew = 001 — 1 for each mini-batch
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Mini-Batch Gradient Descent (cont.)

* Good learning stability (BGD)
* Good convergence rate (SGD)

* Easy to be parallelized
* Parallelization within a mini-batch

Map Parallelized Gradient Reduce Gradient

Sum
WorkerlIIIIII
WorkerZIIIIII

Worker3IIIIII
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Comparisons

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent
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Searching

e Start with a new initial value 6
» Update @ iteratively (gradient descent)
* Ends at a minimum

1

J(eo'el) 0-

200



Unigueness of minimum for convex objectives

loss w.r.t. parameters

0.8

0.6 -

0.2 4

0.0 4

-0.2

-2 -1 0 1 2 3
H(i

* Different initial parameters and different learning algorithm lead to the
same optimum
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Learning rate

Qnew — Hold — 1

18

16}
14}

7 too small

12+

o\ slow convergence

J(0)

s —4 -2 0 2 4 6

* The initial point may be too far away
from the optimal solution, which
takes much time to converge

J(0)

. (6)

00

18

ol 7 too large
1) ‘Increasing value of J(0)

12+

10

-6 '} =2 0 2 a
0

* May overshoot the minimum

* May fail to converge

* May even diverge

* To see if gradient descent is working, print out J(6) for each or every
several iterations. If J(8) does not drop properly, adjust 7
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Problems of ordinary least squares (OLS)

e Best model is to minimize both the bias and the

variance
* Ordinary IeaSt Squares (OLS) Low Variance High Variance
* Previous linear regression
* Unbiased
* Can have huge variance :
e Multi-collinearity among data 3
* When predictor variables are correlated to each other and to the
response variable
e E.g. To predict patient weight by the height, sex, and diet. But height
and sex are correlated
e Many predictor variables
* Feature dimension close to number of data points 3
;_f:u

 Solution
e Reduce variance at the cost of introducing some bias
* Add a penalty term to the OLS equation
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Ridge regression

* Regularization with L2 norm
LRidge = (y _X9)2+/1”9“%

* )l’ — O’ HRldge — HOLS wy A '
A F IR ENFAL
el —> 00,0 -0 - /
* As A becomes larger, the variance decreases but the N\
I I 36 4 AR B — (NS
bias increases RREHA— PN
. . LR EEs /ST W}\'\‘ e o
* A: Trade-off between bias and variance ) / //,/ N
* Choose by cross-validation < % w;
* Ridge regression decreases the complexity of a
model but does not reduce the number of variables V

(compared to other regularization like Lasso) 204



Solution of the ridge regression

a l e
Lg;g =230 1(0Tx; — y)x; + 226

* Letting the derivative be zero

/11+2XXT 9—2 XiVi

x; xXi e x{l V1
clfwewriteX =1|: | = : ,y =1 |, then
Xy Xy e x,‘\l, VN
— (Al + XTX)H =Xy

Hrldge — (/11 + XTX) 1XT

Always invertible
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Logistic Regression



Classification problem

* Given:

e A description of aninstance x € X

* Afixed set of categories: C = {ci1,¢2,...,¢m}
* Determine:

* The category of z: f(x) € C where f(x) is a categorization function whose
domain is X and whose range is C

* If the category set binary, i.e. C = {0, 1} ({false, true}, {negative, positive})
then it is called binary classification



Binary classification

10
. o
a1 L] -
L ﬂl- .
A S
. ] - a¥a *
gl .-l:‘ |.:‘ h‘!l'...
-w :.-.. F__‘& .
al * Jhad .-"l"‘-’- o *
. :.-'1:.'. ,"‘ﬂ*’ K3 -
l.-. L ...‘-‘-. ",‘I
2F ™ #__*".tlf \E# $- ‘.‘- .
TR
ar ) .- . -I
"L 1 0 1 z 3 3 5

Toy binary classification data set

Class 0
. Class 1
. .oo : - 2 .
o ‘.. CA e 0"
L of .
. :*%?:%é&‘:o'
..oo ¢... . ) o.:
'f?k‘:*-‘:o&.?::(%%. “.?tt.' -

Linearly separable

Nonlinearly separable



Cross entropy loss

* Cross entropy
e Discrete case: H(p,q) = — ., p(x)logqg(x)

 Continuous case: H(p,q) = — fx p(x)logqg(x)

* Cross entropy loss in classification:
* Red line p: the ground truth label distribution.

* Blue line g: the predicted label distribution.

_




Example for binary classification

* Cross entropy: H(p,q) = — 2, p(x) log q(x)

* Given a data point (x, 0) with prediction probability
qo(y = 1|x) = 0.4
the cross entropy loss on this point is
L=—-p(y=0|x) logqeéy = 0|x) —p(y = 1l|x) log qo(y = 1|x)

= —log(1—-04) = log§

* What is the cross entropy loss for data point (x, 1) with prediction
probability

qgo(y = 1|x) = 0.3



Cross entropy loss for binary classification

* Loss function for data point (x, y) with prediction model
| pe (- |x)
is
L(y' X, pH)
—1;=1log pg(1lx) — 1=0log pg(0]x)
—y logpe(1lx) — (1 —y)log (1 — pe(1]x))



Binary classification: linear and logistic

* Linear regression:
e Target is predicted by hg(x) = 0"x

* Logistic regression

e Target is predicted by hy(x) = (6 Tx) =
where

1
1+ e=0"x

1
0(2) = 1+ e 2

is the logistic function or the sigmoid function

0.5

9(z)

Logistic function

t
-20
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Properties for the sigmoid function

*g(z) > 1whenz -
* 0(z) > Owhenz » —

1 :z: g per—
° O-(Z) — e /
* Bounded in (0,1)

‘‘‘‘‘

° d — d 1 — —Z —2. _ -B—Z
') =L = —(1+e D)2 (e

1
T 1te? 1_1+e—z)
= a(z)(l — a(z))
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Logistic regression

* Binary classification
po(y = 1|z) = 0(0'z) =

g—l_

1
1+ e 0z

e I

pe(y = Olz) =
1+ E—HTI . / is also convexin 6
* Cross entropy loss function

L(y,z,pg) = —ylogo(0'z) — (1 —y)log(l — (8 'x))

* Gradient
0L(y,x —
TP -y oA - 0@ — (1 9) o ()1 - o)
= (0(0'z) —y)z 90 (2) 20(0
6 —6+n(y— g(ﬂ—r:r.))m 3:; =0(2)(1 —0(2)) | Onew < bolq — 778—((9)




Neural Networks



Perceptron

* |Inspired by the biological neuron among humans and animals, researchers
build a simple model called Perceptron

X w;x; A
it 1if X w.x:>0
=0 0= i=0 171

-1 otherwise

{ 1 ifwg+wiz1+ - +wpzr, >0
o(T1,...,Ty) =

—1 otherwise.

* It receives signals x;’s, multiplies them with different weights w;, and
outputs the sum of the weighted signals after an activation function, step
function
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Neural networks

* Neural networks are built by connecting many perceptrons together,
layer by layer

N4

X @ /\
N7 Awge
55 A’(&V

<2

X A
| A‘§ 20 ,“\v

Na/ @A

Input Layer Hidden Layers

Output Layer
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Activation functions

 Sigmoid: g(z) = 1+i-z
* Tanh: tanh(z) = ZZ;Z:Z

* ReLU (Rectified Linear Unity):
ReLU(z) = max(0, z)

Most popular in fully
connected neural network

Sigmoid Hyperbolic Tangent
1 e 11 -
Traditional /
Non-Linear 0 | 0
Activation
. -1 | -1 !
Functions 1 0 1 1 0 1
y=1/(1+e*) y=(eX-eX) /(e*+e*)
Rectified Linear Unit .
Exponential L
(ReLU) Leaky ReLU xponential LU
1 1 1
Modern
Non-Linear g 0 0
Activation
Functions
-1 -1 -1

/—1 0 1 -1 0 1 -1 0 1
X, X209

Most popular in
deep learning

y=max(9,x) y=max (ax, X) y={u(E"-1);x{9

a = small const. (e.g. 0.1)
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Activation function values and derivatives

— tfﬁgm;i'd (‘T )

Some Common Activation Functions

................................................................................

- tﬁz'ﬁgar_(x)

2

Activation Function Derivatives

.................................................................................

_fle‘fnear(x)

! _flgz'gmafd(x}

— )

-4 -2 0 2 4

X
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Sigmoid activation function

* |ts derivative

* Sigmoid . o' (z) =a(2)(1-0(2))
o(z) = e Output range (0,1)

1+e72 : . :
* Motivated by biological neurons
and can be interpreted as the

a probability of an artificial
neuron “firing” given its inputs
o | * However, saturated neurons
| make value vanished (why?)
£ (£(FC)
| - —L—  £([0,1]) €[0.5,0.732)

» £([0.5,0.732)) < (0.622,0.676)




RelU activation function

Its derivative

* ReLU (Rectified linear unity)
function ReLU'(z) = {
ReLU(z) = max(0, z)

1 ifz>0
0 ifz<0

ReLU can be approximated by softplus function
fSoftplus(-T) — I'Dg(l + BI)

3 :
—Softplus * RelU’s gradient doesn't vanish as x increases
o} Rectifier * Speed up training of neural networks
* Since the gradient computation is very simple
®illy | * The computational step is simple, no exponentials, no
= multiplication or division operations (compared to others)

The gradient on positive portion is larger than
sigmoid or tanh functions

* Update more rapidly

|

-1t a j | 1 * The left “dead neuron” part can be ameliorated by Leaky
-3 -2 -1 0 1 2 3 RelLU 221




RelLU activation function (cont.)

e RelLU function * The only non-linearity comes from the path
selection with individual neurons being active or
ReLU(z) = max(0, z) ot ©

* It allows sparse representations:
» for a given input only a subset of neurons are active

Output

[— ) y N
’—boflplus

. s Hidden layer 2
—Rectifier ’

Hidden layer 1

Input

Sparse propagation of activations and gradients

222



Single / Multiple layers of calculation

* Single layer function Jo
fo(x) = a(0p + 01x; + 0,x3)

* Multiple layer function

* hy(x) = 0(6% + 01x; + 63x,) Jo
* hy(x) = 0(0§ + 07x1 + 05x;)
* fo(h) = a(6y + 01hy + 0,h,) h h:
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How to train?

* As previous models, we use gradient descent method to train the
neural network

e Given the topology of the network (number of layers, number of
neurons, their connections), find a set of weights to minimize the
error function

E[w = — td—od
deD

The set of
training Target
examples
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Gradient descent

* To find a (local) minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient (or an
approximation) of the function at the current point

* For a smooth function f(x) 9 ;

rapidly. So we apply

|s the direction that f increases most

Xt41 = X 77 Xt
| t+ t ax ( )
until x converges



The chain rule

* The challenge in neural network model is that we only know the
target of the output layer, but don’t know the target for hidden and
input layers, how can we update their connection weights using the
gradient descent?

* The answer is the chain rule that you have learned in calculus
y = f(g(x))
Y _ :
— =99’ @)



Make a prediction

input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

2), (1
f(l) nﬁf 1) Z qu m'rm f(‘)) net( Y Zw:‘(ﬁ;h_g :

x=(21,...,Zm) h(l) > Uk

(1) _
h;

where net\t) = Z w2 nety) = wihY

J
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Make a prediction (cont.)

. 1 1) 1)
inputs w; g, Mel M (2) outputs labels

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

h( ) = f( ) net( ) f( ) Zw m - fq) nef f(r) Zu,kl)h 1)

z=(21,....,2Tm) > hgl) L

(1) _ (1) 2 1)
where net;’ = ij‘mxm nef;(r} — Z éjhg 578

J



Backpropagation

inputs Wim (2) outputs labels

&

Input layer hidden layer output layer

Two-layer feedforward neural network

Feed-forward prediction:

Assume all the activation functions are sigmoid

Error function E = %Zk(yk — t;,)?

9E _ o,
oy, Tk Ttk

d I} 2 1 1
=y (net,g )) h} ) = y(1 - yk)h} )

(2)
awk'j

OF
> —(F = —(tx ~ Yy (1 - vi)ht
ow J
k,j
2 2 2 1
. = ng,j) « WIEJ-) + n(S,E )hjg ) 519)

Output of unit j

BV = faynetd) = fay (3 wihdm) v = foy(net?) = fioy (D w
m (1) J
h

@, (1)
kM

= (21,..., %) >

where netgl) = Z wf,-‘l%:rm netf) = Z wZI Y

J

k,g""3
J

-

)

Yk
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Backpropagation (cont.)

(1) ?letgl) hgl)

inputs Wim (2) outputs labels

Input layer hidden layer output layer
Two-layer feedforward neural network

Feed-forward prediction:

R = foy(mety)) = f(l)(zw om) = o net®) = f Z“‘“
1)
» b

Error function E = %Zk(yk — t;,)?

OE

— =Yk — g

oYk

5;52) = (tx — Vi)V (1 — yx)

= W,E ]) « W,EZJ) + nSI(CZ)hJQ)

dyr )

ah§.1) =y (1 —y)w

oniY e 1 1)
D = fly (netf) xm = BP (1= ")

(')E 1 1
T = —h“( 1= b)) S w (6 = vi0vi (1= 1)

e h(l) z wB5® xp

(1) (1) (1)
Wim < + T)5 Xom :Il 5]_(1)

@), (1)

kg3

J

\Ivhe re netgl) =y wf:,l%xm net,”) = . }:j hgl)

-

Yk
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e Error function E = %Zk(yk — ty)?

Backpropagation algorithms |+ 8% = e=vana -

¢ o w® cw® 4 ps@ D

L . o LS W@ (2) 5(2)
* Activation function: sigmoid 6" = n (1= hV) Zewi) 5

. (1) (1) (1)
= Wiy < Wiy + 775]. Xm

Initialize all weights to small random numbers
Do until convergence

* For each training example:
1. Inputit to the network and compute the network output
2. For each output unit k, oy, is the output of unit k

6 < 0 (1 — 0r) (& — 0)
3. Foreach hidden unit j, o; is the output of unit j

5] — 0](1 - O]) Z Wk,j5k

_ kenext layer o
4. Update each network weight, where x; is the output for unit i

Wji < Wji + 106X



Formula example for backpropagation

Cutputs




Formula example for backpropagation (cont.)

o }—P
N 1. Calculate errors of output neurons

T ) 84 = outy (1 - out,,) (Target, - out,,)
/B\_. k _( k —_h;) 122) (?ref;, ) 8“: OUt[ﬁ (] _ Out[;) (Target[; _ out”)

N

: /\ ) 2. Change output layer weights
N o) WIPAQ = Waa + nNdy outy WTAB = W,\ﬁ + T]SB outa
\_/ Awy? = nError,Output, = &, W ge = Wpy + Nnd, outp W pg= Wgp + ndg outp

Wca= Weo + 18, out W ep= Wep + 1ndp out
3. Calculate (back-propagate) hidden layer errors

Consider sigmoid . 8= outa (1 —outa) (3 Wae+ 55Wap)
activation function Jsemeid™/ = = S =fu ‘(nerj—”)zrf,,wg? 3= outp (1 — outg) (8 Wpy + 35Wgp)
k d¢ = outc (1 —outc) (8Weo + 3gWep)

1
0.9}
08
0.7}
06}
0.5}

4. Change hidden layer weights

04 | WA= Wia+ ndaim Waa=Wga + ndain
02| | mrj.lf" =nErmor,Quiput,, = nox,, ."A_ i AT :.QA_ A N AT
0; | Wiis= Wi+ nogin;, Wiap=W s + ndping
0 o " B . } - i .
Wic= Wic+ndeiny Wiac=W gc +nocing

-f'Sigmor'd ('\) = j:S’fgmor'd (I)(l - fS‘igmofd ("\)) 233



Calculation example

* Consider the simple network bE|OW'

0.8 \ -~ \7 ~
— Output

04/ \/\ /
\ /

Input 0.1
A =035

Input
B=09 0.6

e Assume that the neurons have sigmoid activation function and
* Perform a forward pass on the network and find the predicted output
* Perform a reverse pass (training) once (target =0.5) withn =1
e Perform a further forward pass and comment on the result



* For each output unit k, oy, is the output
of unit k

Calculation example (cont.) Sy < 01— 0tk — 00)

* For each hidden unit j, o; is the output of

Answer: unity
(i)
Input to top neuron = (0.35x0.1)+(0.9x0.8)=0.755. Out = 0.68. §; « Oj(l — Oj) z Wi, i Ok
Input to bottom neuron = (0.9x0.6)+(0.35x0.4) = 0.68. Out = 0.6637. '
Input to final neuron = (0.3x0.68)+(0.9x0.6637) = 0.80133. Out = 0.69. kenext layer
* Update each network weight, where x; is
(i) the input for unit j

Output error 5=(t-0)(1-0)o = (0.5-0.69)(1-0.69)0.69 = -0.0406.
Wi < Wj; +10;x;

New weights for output layer

wl' = w1+ x input) = 0.3 + (-0.0406x0.68) = 0.272392.
w2" = w2+(8 x input) = 0.9 + (-0.0406x0.6637) = 0.87305.

Errors for hidden layers: )
81 =38 x wl =-0.0406 x 0.272392 x (1-0)o =-2.406x10™
82= 86 x w2 = -0.0406 x 0.87305 x (1-0)0 =-7.916x10"

. . Input 0.1 .'/ \\\

New hidden layer weights: A =035 \ J~03
w3'=0.1 + (-2.406 x 107 x 0.35) = 0.09916. 08 " \/\
wd' = 0.8 +(-2.406 x 107 x 0.9) = 0.7978. | b Output
w5'=0.4+(-7.916 x 10” x 0.35) = 0.3972. 04, S
w6 = 0.6 +(-7.916 x 107 x 0.9) = 0.5928. put e %’

R N
(1i1)

Old error was -0.19. New error is -0.18205. Therefore error has reduced.
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Calculation example (cont.)

* Answer (i)
* Input to top neuron = 0.35 X 0.1 + 0.9 X 0.8 = 0.755. Out=0.68
* Input to bottom neuron = 0.35 X 0.4 + 0.9 X 0.6 = 0.68. Out= 0.6637
* Input to final neuron = 0.3 X 0.68 + 0.9 X 0.6637 = 0.80133. Out= 0.69

* (ii) It is both OK to use new or old weights when computing ¢; for hidden units
e Outputerrord = (t—0)o(1—0)=(0.5-0.69) X 0.69 X (1 —0.69) =—0.0406
* Error for top hidden neuron §; = 0.68 X (1 — 0.68) x 0.3 X (—0.0406) = —0.00265
* Error for top hidden neuron §, = 0.6637 X (1 — 0.6637) X 0.9 X (—0.0406) = —0.008156
* New weights for the output layer

* Wy, =0.3—-0.0406 X 0.68 = 0.272392
* Wy, =0.9-0.0406 X 0.6637 = 0.87305
* New weights for the hidden layer

* wyyu =0.1-0.00265 x 0.35 = 0.0991

* w;p =0.8-0.00265x%0.9 =0.7976

* wyu = 0.4—-0.008156 x 0.35 = 0.3971
* wyp =0.6—-0.008156 x 0.9 = 0.5927

Input to top neuron = 0.35 X 0.0991 4+ 0.9 X 0.7976 = 0.7525. Out=0.6797

* Input to bottom neuron = 0.35 X 0.3971 + 0.9 X 0.5927 = 0.6724. Out= 0.662

* Input to final neuron = 0.272392 X 0.6797 4+ 0.87305 X 0.662 = 0.7631. Out= 0.682
* New erroris —0.182, which is reduced compared to old error —0.19

For each output unit k, oy, is the output
of unit k

O < 0 (1 — 0p ) (t — 0k)
For each hidden unit j, o; is the output of
unit j

5 < 0j(1-0) z Wi,jOk

kenext layer

Update each network weight, where x; is
the input for unit j

Wi < Wj; +10;x;

Input 0.1 .r/ \
A=035 \ /<03

08 " \7’ ™~

' ——> Output

0.4 YR ~ /
Input 4"
B=09 0.6 /.

N4
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Bayes Nets: Probabilistic Models



Uncertainty

* General situation:

* Observed variables (evidence): Agent knows certain things
about the state of the world (e.g., sensor readings or
symptoms)

* Unobserved variables: Agent needs to reason about other
aspects (e.g. where an object is or what disease is present)

* Model: Agent knows something about how the known
variables relate to the unknown variables

. . . . 0.05 0.05
* Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge
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Probabilistic Inference

* Probabilistic inference: compute a desired probability from other known
probabilities (e.g. conditional from joint)

* We generally compute conditional probabilities
* P(on time | no reported accidents) = 0.90
* These represent the agent’s beliefs given the evidence

* Probabilities change with new evidence:
 P(ontime | no accidents, 5a.m.) =0.95
 P(ontime | no accidents, 5 a.m., raining) = 0.80
* Observing new evidence causes beliefs to be updated



Inference by Enumeration

* Works fine with

= We want: multiple query
variables, too
* General case:

* Evidencevariables: £1 ... =€1... €, | X1 X5 ... X,

* Query* variable: @ .

* Hidden variables: Hj...Hy All variables

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
><_
A

—— Z = ZP(Q,el---ek)
P(Q,e1...e;) = Z P(Cz,hl...hr,el...%) 4
hi.h

1
—
X17X27-..an, P(Q‘el ) ”ek) — EP(Qael e 'ek)



Answer Any Query from Joint Distributions

* Two tools to go from joint to query
e Joint: P(H{,H,,Q,E)
* Query: P(Q | e)
1. Definition of conditional probability
P(Q,e)

P(Qle) = — =

2. Law of total probability (marginalization, summing out)

P(Q.e)= ) > P(hy,hy,0,¢)

hi hy

P(e)=) ) ) P(hihyq.e)
q

h, h,
P(Q,e)
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Answer Any Query from Joint Distributions

e Joint distributions are the best!

* Problems with joints

* We aren’t given the joint table P(a | e)

* Usually some set of conditional probability
tables

* Problems with inference by enumeration
* Worst-case time complexity O(d")
e Space complexity O(d") to store the joint distribution




Build Joint Distribution Using Chain Rule

Conditional Probability Tables Joint
and Chain Rule

Query

fl> fl> P(ale)

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)
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Quiz

3%

e Variables
 B: Burglary
A: Alarm goes off
M: Mary calls
J: Johncalls
E: Earthquake! o Yk

How many different ways can we write the chain rule?

A4 1

B 5

C. 5choose5
D. 5!

E 5°
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Answer Any Query from Condition Probability
Tables

* Bayes’ rule as an example

* Given: P(E|Q), P(Q) Query:P(Q |e)
1. Construct the joint distribution
1. Product Rule or Chain Rule
P(E,Q) = P(E|Q)P(Q)
2. Answer query from joint
1. Definition of conditional probability

P(e,
P(Qle) = }()e(ec)z)

2. Law of total probability (marginalization, summing out)

_ P(e,Q)
P(Qle) =S P,

P(e’ Q) 245




Bayesian Networks Bayes net

A
* One node per random variable, DAG
* One conditional probability table (CPT) per node: @‘

P(node | Parents(node) )

P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|A,B, C) O

Encode joint distributions as product of conditional
distributions on each variable

P(Xy,...,Xy) = HP(Xil Parents(X;))
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Answer Any Query from Condition Probability

Tables

Conditional Probability Tables
and Chain Rule

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)

o

Joint

Query

fl> P(a|e)
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Answer Any Query from Condition Probability
Tables 2

Conditional Probability Tables * Problems

and Chain Rule = Huge

e nvariables with d
values

e d" entries

= We aren’t given the
right tables

P(A) P(B|A) P(C|A,B) P(D|A,B,C) P(E|A,B,C,D)
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Do We Need the Full Chain Rule?

* Binary random variables

* Fire
e Smoke
e Alarm
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Answer Any Query from Condition Probability

Tables
Bayes Net Joint

Query

S ™ pale

P(A) P(B|A) P(C|A) P(D|C) P(E|C)

P(X{,...,Xy) = HP(XiI Parents(X;))



Probabilistic Models

* Models describe how (a portion of) the world
works

* Models are always simplifications
* May not account for every variable
* May not account for all interactions between

variables

« “All models are wrong; but some are useful.”

— George E. P. Box

 What do we do with probabilistic models?

We (or our agents) need to reason about unknown
variables, given evidence

Example: explanation (diagnostic reasoning)

Example: prediction (causal reasoning)
Example: value of information

251



(General) Bayesian Networks Baves net

* One node per random variable, DAG @

* One conditional probability table (CPT) per node:
P(node | Parents(node) ) @

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C) O

Encode joint distributions as product of conditional
distributions on each variable

P(Xy,...,Xy) = HP(Xil Parents(X;))
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Conditional Independence

* P(Toothache, Cavity, Catch)

* |f | have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

* P(+catch | +toothache, +cavity) = P(+catch | +cavity)

* The same independence holds if | don’t have a cavity:
* P(+catch | +toothache, -cavity) = P(+catch| -cavity)

* Catch is conditionally independent of Toothache given Cavity:
* P(Catch | Toothache, Cavity) = P(Catch | Cavity)

* Equivalent statements:
* P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

* P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch |
Cavity)

* One can be derived from the other easily 253



Conditional Independence (cont.)

* Unconditional (absolute) independence very rare (why?)

e Conditional independence is our most basic and robust form of knowledge about
uncertain environments.

* X is conditionally independent of Y given Z XUY|Z

P Y )
if and only if: P(z|z,y) = Igf;y?)

Va,y,z : P(x,ylz) = P(z]2)P(y|z)

_ P(a,yl2)P(2)

or, equivalently, if and only if P(ylz)P(2)
Vo, y,z : P(x|z,y) = P(z|2) _ P(2]2) P(y]2) P(2)

P(y|z)R(z)



Conditional Independence and the Chain Rule
* Chain rule: P(X1,X5,...Xn) = P(X1)P(X5|X1)P(X3|X1,X5)...

* Trivial decomposition:
P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain, Traffic)

e With assumption of conditional independence:

P(Traffic, Rain,Umbrella) =
P(Rain) P(Traffic|Rain) P(Umbrella|Rain)

* Bayes nets / graphical models help us express conditional independence assumptions
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Bayes’ Nets: Big Picture

* Two problems with using full joint distribution tables
as our probabilistic models:

* Unless there are only a few variables, the joint is WAY too big
to represent explicitly '

* Hard to learn (estimate) anything empirically about more
than a few variables at a time

* Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

* More properly called graphical models
* We describe how variables locally interact

* Local interactions chain together to give global, indirect
interactions

* We first look at some examples




Bayes’ Net Semantics

* A set of nodes, one per variable X

e A directed, acyclic graph

* A conditional distribution for each node

* A collection of distributions over X, one for each
combination of parents values

P(Xl|aqy...an)

* CPT: conditional probability table

* Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
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Probabilities in BNs

* Bayes' nets implicitly encode joint distributions
* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment, multiply all the relevant conditionals
together: n

P(z1,%2,...2n) = || P(=z;|parents(X;))

1=1
Toothache @

P(+cavity, 4+catch, -toothache)

=P(-toothache | +cavity)P(+catch | +cavity)P(+cavity)

* Example:
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Probabilities in BNs 2

Why are we guaranteed that setting

n
P(z1,%2,...2n) = || P(=z;|parents(X;))
1=1
results in a proper joint distribution?

n
Chain rule (valid for all distributions): P(xz1,20,...2n) = H P(xi|lx1 ... 1)
1=1

Assume conditional independences: P(x;|z1,...x;_1) = P(x;|parents(X;))

- Consequence: n
P(z1,x2,...2n) = || P(z|parents(X;))

1=1
Not every BN can represent every joint distribution

* The topology enforces certain conditional independencies




Example: Alarm Network

B P(B)
+b | 0.001
-b | 0.999
A | J | PUIA) o
+a | 4] 0.9
+a | 4 0.1
-a +j 0.05
-a -j 0.95
| N —
P(+b,—e,+a,—j,+m) =

E P(E)

+e | 0.002

-e | 0.998

A M P(M]|A)
+a | +m 0.7
+3 -m 0.3
-a +m 0.01
-a -m 0.99

B E A P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e | -a 0.999
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Quiz

 Compute P(—c, +s,—1,+wW) PsIC)
+5 0.1
+C
-5 0.9

+5 0.5

0.0 “ s [os

0.0004
0.001
0.036
0.18
0.198

. 0.324

G MmO O WP

P(C)

+C 05
-C 0.5
P(R|C)
+T 0.8
+C
-r 0.2
+T 0.2
-C
- 0.8
P(W|S,R)
+W 0.99
+
- 0.0
+3
i +W 09
- 01
+W 09
+
. -W 0.1
i +W 0.99
-W 0.01




Conditional Independence Semantics 2

* For the following Bayes nets, write the joint P(4, B, C)

1. Using the chain rule (with top-down order A,B,C)

2. Using Bayes net semantics (product of CPTs)

P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|B)
Assumption:

P(C|A,B) = P(C|B)

Cis independent from A given B

P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|A)
Assumption:

P(C|A,B) = P(C|A)

Cis independent from B given A

P(A) P(B|A) P(C|A, B)
P(A) P(B) P(C|A, B)
Assumption:

P(B|A) = P(B)

A is independent from B ng\zlen {}



Causal Chains

" Guaranteed X independent of Z ?
= No!

Lo« L5 2N = One example set of CPTs for which X is not
) ////// .L! independent of Z is sufficient to show this

* This configuration is a “causal chain”

independence is not guaranteed.

= Example:

* Low pressure causes rain causes traffic,
high pressure causes no rain causes no
X: Low pressure Y: Rain Z: Traffic traffic

* In numbers:
P(x,y,z) = P(z)P(y|z)P(z|y)
P(+y | +x)=1,P(-y | -x) =1,
P(+z | +y)=1,P(-z|-y)=1
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Causal Chains 2

. o o o 11 o 7 = X . fZ . Y?
* This configuration is a “causal chain Guaranteed X independent of Z given

P(z,y,z)

(]‘:}‘-‘\ W {;K! P(z|x,y) = P(e.v)

SDST A

X: Low pressure Y: Rain Z: Traffic — P(Z|y)

_ P(x)P(ylz) P(z|y)
P(z) P(y|z)

Yes!

P(x,y,z) = P(z)P(y|lz)P(z]y) » Evidence along the chain “blocks” the

influence
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Common Causes

. . . . 11 ”
* This configurationisa common cause
No!

Y: Project Praject
Due!
due

= Example:
Project due causes both forums busy
@ @ and lab full
X: Forums

busy —E @‘? : Lab fu

P(+x | +y)=1,P(-x|-y)=1,

P(+z | +y)=1,P(-z|-y)=1
P(z,y,z) = P(y)P(z]y) P(z|y)

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.




Common Cause 2

: : L » % Guaranteed X and Z independent given Y?
* This configurationisa common cause

Y: Project Pr-o_jei.’c P(Z|CE‘ y) — P(.CU,y,Z)
due T Payy)
_ PQy) P(z|y) P(z]y)
P(y)P(x|y)

= P(z|y)

Yes!

X: Forums
busy

= Observing the cause blocks influence
P(x,y,2) = P(y)P(z|y) P(z|y) between effects
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Common Effect

. . = l ?
- Last configuration: two causes of ~ /"¢ @n¢ Y independent:

ohe effect (V-Structu res) = Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

\E‘E‘ ';” i " Proof:
P<x,y) ] ZP(ZB,y,Z)

:Pa:Py (z]x,y)
= P(2)P(y)

Z: Traffic



Common Effect 2

: : " Are XandY independent?
* Last configuration: two causes of

one effect (v-structures) = Yes: the ballgame and the rain cause traffic, but

o they are not correlated
X: Raining Y: Ballgame

= (Proved previously)

= Are XandY independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= QObserving an effect activates influence between

Z: Traffic possible causes
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Causality?

* When Bayes' nets reflect the true causal patterns:

e Often simpler (nodes have fewer parents)
* Often easier to think about
» Often easier to elicit from experts

* BNs need not actually be causal

* Sometimes no causal net exists over the domain (especially if
variables are missing)

* E.g. consider the variables Traffic and Drips
* End up with arrows that reflect correlation, not causation

 What do the arrows really mean?

* Topology may happen to encode causal structure
* Topology really encodes conditional independence

P(z;|T,...xi_1) = P(=z;|parents(X;))
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Bayes Net Semantics

* A directed, acyclic graph, one node per random
variable

» A conditional probability table (CPT) for each node

* A collection of distributi,ons over X, one for each
combination of parents values

* Bayes nets implicitly encode joint distributions

* As a product of local conditional distributions

* To see what probability a BN gives to a full assignment,
multiply all the relevant conditionals together:

mn
P(z1,22,...2n) = || P(z;|parents(X;))
1=1




Size of a Bayes Net

= Both give you the power to calculate

* How big is a joint distribution over N P(X1,Xo,...X»n)
Boolean variables?

2N

= BNs: Huge space savings!

= Also easier to elicit local CPTs

* How big is an N-node net if nodes have up
to k parents?

O(N * 2k+1) E:

= Also faster to answer queries
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Bayes Nets: Assumptions

* Assumptions we are required to make to define the
Bayes net when given the graph:

P(x;|zy---xi_1) = P(x;|parents(X;))

* Beyond those “chain rule - Bayes net” conditional
independence assumptions

e Often

* They can be read off the graph

272



Example

CO—(D)—~()—~()

e Conditional independence assumptions directly from simplifications

in chain rule:

P(x,y,z,w) = P(x)P(y
= P(x)P(y

XUZly WU{XY}Z

r)P(z
r)P(z

z,y)P(w|x,y, 2)
y)P(w|z)

* Additional implied conditional independence assumptions?

W 1L XY  How?



Independence in a BN

* Important question about a BN:
* Are two nodes independent given certain evidence?
(tedious in general)

OO0

* Question: are X and Z necessarily independent?
* Answer: no. Example: low pressure causes rain, which causes traffic.
e Xcaninfluence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?

* Example:



The General Case

* General question: in a given BN, are two variables independent (given
evidence)?

e Solution: analyze the graph

* Any complex example can be broken

into repetitions of the three canonical cases
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Bayes Ball

Active Triples Inactive Triples

* Question: Are X and Y conditionally independent
given evidence variables {Z}? OO0

1. ShadeinZ O/O\O
2. Drop aball at X
3. The ball can pass through any path and

is blocked by any inactive path (ball can move

either direction on an edge) O\.A/O
4. If the ball reachesY, then Xand Y are

conditionally independent given Z
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Example

R1 B Yes
R 1l B|T

R B|T'



Example 2

L1LTT Yes
L1 B Yes
L1 B|T

L1 B|T

LI1B|T,R Yes



Example 3

 Variables:
* R: Raining
e T: Traffic
* D: Roof drips
* S:I'm sad
* Questions:
T D

T D|R
T D|R, S

Yes



Quiz

* Is X; independent from X, given X,?

X4

X5

X
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Quiz (cont.)

* Is X; independent from X, given X,?
* No, the Bayes ball can travel through X; xnd X:.
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Quiz 2

* Is X, independent from X5 given X; and X?
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Quiz 2 (cont.)

* Is X, independent from X5 given X; and X?
* No, the Bayes ball can travel through X5 xnd X.
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Bayes Nets: Inference



Queries

P(Q|€)=P(q' e):Zhlzth(q' hy, ha, e)

P@ P
CPQ @ nZn,P(Q hy hy e)
PlRle) == = P
P(q, e)

argmax,co P(q | e) = argmax ¢ P o)
Zhlzth(CI; hl; hz, e)
P(e)

= argmaxgeg



nference by Enumeration in Joint
Distributions  orts e wit

multiple query
variables, too

* General case: P(Qle1...ex)
* Evidence variables: £1 ... Fp = e1 ... e X1,X0,...Xn

* Query* variable: & .
* Hidden variables: Hi ... Hy All variables

0.2
0.01 ép-_-_i A\
-’ Z=ZP(Q,€1“°€,&)
P(Q,e1...e;) = > P(C\Q,hl...hr,el...eﬁ) 4

1
hi...hy
e T T T P@er ) = SP@e e



Inference by Enumeration: Procedural Outline

Track objects called factors

Initial factors are local CPTs (one per node)

P(R) P(T|R) P(L|T)
+r 0.1 +r | +t [ 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 +t -| 0.7

-r + | 0.1 -t + 0.1
-r -t | 0.9 -t -| 0.9

* Any known values are selected
« E.g.if we know L = -/, the initial factors are

P(R) P(T|IR)  P(44T)
+r 0.1 +r | +t | 0.8 +t + 0.3
-r 0.9 +r -t | 0.2 -t + | 0.1

-r +t [ 0.1
-t | 0.9

Procedure: Join all factors, then sum out all
hidden variables



Operation 1: Join Factors
* First basic operation: joining factors % . =

* Combining factors:
e Just like a database join
* Get all factors over the joining variable
e Build a new factor over the union of the variables involved

 Example: Join on R

R P(R) X P(T|R) wmmp P(R,T)

+r 0.1 +r | +t (0.8 +r | +t | 0.08

-r 0.9 +r | -t {0.2 +r | -t | 0.02

6 or | +t |0.1 -r | +t | 0.09
-r | -t 10.9 -r | -t | 0.81

e Computation for each entry: pointwise products ‘v’fr', . P(’I“, t) — P("“) ) P(t|"°)
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Operation 2: Eliminate

* Second basic operation: marginalization

* Take a factor and sum out a variable
* Shrinks a factor to a smaller one

* A projection operation

* Example:

P(R,T) T
+r | +t | 0.08 sum R ( )
+r | -t | 0.02 ‘ +

-r | +t | 0.09 -1
-r| -t |0.81
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Thus Far: Multiple Join, Multiple Eliminate (=
Inference by Enumeration)

P(R)

P(T|R) me) P(R,T,L) om) P(L)

P(L|T)



Inference by Enumeration in Bayes Net

* Reminder of inference by enumeration: e e

* Any probability of interest can be computed by summing entries
from the joint distribution

* Entries from the joint distribution can be obtained from a BN by o

multiplying the corresponding conditional probabilities

* So inference in Bayes nets means computing sums of
products of numbers: sounds easy!!

* Problem: sums of exponentially many products!



Can we do better?

e Consider

* 16 multiplies, 7 adds
* Lots of repeated subexpressions!

e Rewrite as

e 2 multiplies, 3 adds

z z P(B) P(e) P(a| B,e) P(j | @) P(m | 0)

= P(B) P(+e) P(+a
+ P(B) P(—e) P(+a
+ P(B) P(+e) P(—a
+ P(B) P(—e) P(—a

* Lots of repeated subexpressions!

B,+e) P(j

B,—e) P(j
B,+e) P(j
B,—e) P(j

+a) P(m
+a) P(m
—a) P(m
—a) P(m




Inference by Enumeration vs. Variable
Elimination

" |dea: interleave joining and marginalizing!

 Why is inference by enumeration so L o
= Called "Variable Elimination

slow?

* You join up the whole joint distribution
before you sum out the hidden variables

- @
- 7

= Still NP-hard, but usually much faster than
inference by enumeration

[ -




Variable
Elimination

Enumeration

Inference Overview

* Given random variables Q, H, E (query, hidden, evidence)
— » We know how to do inference on a joint distribution

P(qle) = a P(q,e)
= Dpefhy,hpy P (0 1 €)

* We know Bayes nets can break down joint in to CPT factors
P(qle) = aZhe{hl,hz}P(h) P(qlh) P(elq)

= a [P(hy) P(qlhy) P(elq) + P(h;) P(qlh;) P(elq)]
— » But we can be more efficient
P(qle) = a P(e|q) Zhe{hl,hz}P(h)P(Cﬂh)

= a P(elq) [P(hy)P(qlhy) + P(hy)P(ql|h;)]

= a P(elq) P(q)

— * Now just extend to larger Bayes nets and a variety of queries
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Answer Any Query from Bayes Net (Previous)

P(a|e)

P(A) P(B|A) P(C|A) P(D|C)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

> P(a|e)

P(A) P(B|A) P(C|A) P(D|C) P(E|C)



Marginalizing Early! (aka VE)

P(R)

+r

0.1

-r

0.9

P(T|R)

+r

+t

0.8

+r

-t

0.2

-r

+t

0.1

-r

-t

0.9

P(L|T)

+t

+]

0.3

+t

0.7

-t

+|

0.1

-t

0.9

>

P(R,T)

+r

+t

0.08

+r

-t

0.02

P(T)

-r

+t

0.09

+t

0.17

-r

-t

0.81

-t

0.83

P(L|T)

P(L|T)

+t

+]

0.3

+t

+]

0.3

+t

0.7

+t

0.7

+|

0.1

+]

0.1

0.9

0.9

>

Q>

P(T,L)

+t

+|

0.051

L

P(L)

+t

0.119

+l

0.134

+|

0.083

0.866

0.747
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Evidence

* |If evidence, start with factors that select that evidence
* No evidence, uses these initial factors:

P(R) " P(TIR)  P(LIT) NAE

+r 0.1 +r | +t | 0.8 +t + 0.3 |

cheloel [ e
T | t |09 + | 4 o9 '

LI
» Computing P(L| + r) , the initial factors become: ‘&&,‘b‘ =
S0\

P(+r) P(T|+r)  P(LIT) .

\Ns
(B2 —
+t + | 0.3 /' _

=
e o
=
+r -t | 0.2 +t -| 0.7

_. =
| + |01 '--'!.- ==

o t [ 1 Jo9 i &@ _ -
* We eliminate all vars other than query + evidence ———
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Evidence |l

* Result will be a selected joint of query and evidence
e E.g.for P(L | +r), we would end up with:

P(+r, L) P(L|+ )

+r | +| | 0.026 — + | 0.26
+r | -l | 0.074 -l 1 0.74

* To get our answer, just normalize this! e /4 N
(=N
=

* That’s it!
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Variable Elimination

* Works fine with

= We want: multiple query
variables, too
* General case:

* Evidencevariables: £1 ... =€1... €, | X1 X5 ... X,

* Query* variable: & '

« Hidden variables: Hi...Hy All variables

= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
><_
A

Y ET
—— Z=ZP(Q,€1”°€;€)
P(Q,eq...e) = > P(C\Q,hl...hr,el...%) 4

hioh

1
"t T V e & & _ — e & 8
* |nterleave joining and summing out X7, X»,... X, P(Qler---ex) = ZP(Q,61 ek)



General Variable Elimination

* Query: P(Q|E1 = €1,... Ek: = ek)

e Start with initial factors:
* Local CPTs (but instantiated by evidence)

* While there are still hidden variables (not Q or
evidence):
* Pick a hidden variable H
* Join all factors mentioning H
* Eliminate (sum out) H

* Join all remaining factors and normalize

' l\\(\\\\\\\\\ v

i g ! A\\‘\\\\\\\\\J

om-ll X

1

Z
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Variable Elimination

function VariableElimination(Q, e, bn) returns a distribution over Q
factors & [ ]
for each var in ORDER(bn.vars) do
factors < [MAKE-FACTOR(var, e)|factors]
if var is a hidden variable then
factors < SUM-OUT(var,factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Example
P(B|j,m) < P(B,j,m)

P(B) P(E) P(A|B, E) P(jlA)  P(m|A)

P(B‘j7 m) X P(B, j) m) marginal can be obtained from joint by Summing ou
— Z P(B,j,m,e, a) use Bayes’ net joint distribution expression
- ZP P(a|B, ¢)P(j]a) P(mla) use x*(y+2) = xy + xz
= Z P(B Z P(a|B,e)P(jla)P(m|a) joining on a, and then summing out gives f,
— Z P fl (J’ m\B e) use x*(y+z) =xy +xz
B) Z P(e)fi(j,m|B, e) joining on e, and then summing out gives f,
= P(B) f3(j,m|B)

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Example (cont’d)
P(Bl|j,m) oc P(B,j,m)

P(B) P(E) P(A|B, E) P lA)  P(mlA)
Choose A
P(A|B, E)
P(j]A) » P(j,m, A|B, E) » P(j,m|B, E)
P(m|A)

P(B)

P(E)

P(j,m|B, E)
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Example (cont’d)

P(B) P(E) P(j,m|B, E) O (&
Choose E o

P(E) » P(j,m, E|B) » P(j,m|B) O ()
P(j,m|B, E)

P(B) P(j,m|B)

Finish with B

P(B) | |
o) B pGmn) S P(Blim)
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Another Variable Elimination Example
Query: P(X3|Y1 =y1,Y2 = y2, Y3 = y3)
Start by inserting evidence, which gives the following initial factors: Z
P(2),P(X1|Z), P(X2|Z), P(X3]Z), P(y1|1X1), P(y2|X2), P(ys]|X3)

Eliminate X7, this introduces the factor fi(y1|2) = >_, P(z1|2)P(y1lx1), (X4 X5
and we are left with:

P(Z), P(X2]Z2), P(X3|Z), P(y2| X2), P(y3|X3), f1(y1|Z) ‘ Q

Eliminate X3, this introduces the factor fa(y2|Z) = >, P(x2]|Z)P(yz2|r2),
and we are left with:

X3

P(Z), P(X3|Z), P(ys| X3), /1(4112), f2(y2]Z) Computational complexity critica.IIy
depends on the largest factor being

Eliminate Z, this introduces the factor f3(y1,y2, X3) = >, P(2)P(X3|2) fi(y1|Z) f2(y2]2),
and we are left with:

P(y3|X3), fa(y1, y2, X3)

No hidden variables left. Join the remaining factors to get:

generated in this process. Size of factor
= number of entries in table. In
example above (assuming binary) all
factors generated are of size 2 --- as

f4(y1ay2ay37X3) — P(y3|X3) f3(y17y27X3) they all Only have one variable (Z’ Z'

and X, respectively).

Normalizing over X3 gives P(X3|y1,¥y2,y3) = fa(y1,y2,y3, X3)/ D>, fa(y1,Y2,¥3,23)
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Variable Elimination Ordering

* For the query P(X, |y4,-..,Y,) work through the following two different orderings as done in previous
slide: Z, Xy, ..., X,y and Xy, ..., X,.;, Z. What is the size of the maximum factor generated for each of the
orderings?

Z

Xl X2 ani— 1 Xn
Y1 Yo ) Yo—1 [ Yn

* Answer: 2" versus 2 (assuming binary)

* |In general: the ordering can greatly affect efficiency



VE: Computational and Space Complexity

* The computational and space complexity of variable elimination is determined by
the largest factor

* The elimination ordering can greatly affect the size of the largest factor
* E.g., previous slide’s example 2" vs. 2

* Does there always exist an ordering that only results in small factors?
* No!



Worst Case Complexity?

* CSP:
(.’,Cl VIL'Q \/_Ia?g),/\(_lml\/&f3\/_l$4)/\($2V_I£C2V$4)/\(_I$3V_|$4V_I£C5)A($2V$5V$7)/\(334\/.’1}5\/:135)/\(_I$5\/ﬂfﬁv_lm?)/\(_l$5\/—l$5\/$7)

P(X;=0)=P(X;=1)=05
Yl =X1 VXQV_IX;g

Ya = —X: V X6 V Xo
Yio=Y1AYs

Yrs =Y7 AYg
Yi234=Y12AY34
Y5678 =Y56 N\ Y73

Z =Y1234NY5678

* |f we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution
* Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general 309



Variable Elimination: The basic ideas

* Move summations inwards as far as possible
* P(B|j,m)= a2,2.,P(B)Ple)Pla|B,e) P(jla) P(m]|a)
= a P(B) 2., P(e) 2, P(a|B,e) P(j|a) P(m|a)

Do the calculation from the inside out
e |.e., sum over o first, then sum over e

* Problem: P(a|B,e) isn’t a single number, it’s a bunch of different numbers
depending on the values of Band e

 Solution: use arrays of numbers (of various dimensions) with appropriate
operations on them; these are called factors
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