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Search Problems

• A search problem consists of:
• A state space

• For each state, a set 
Actions(s) of successors/actions

• A successor function
• A transition model T(s,a)
• A step cost(reward) function c(s,a,s’)

• A start state and a goal test

• A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

{N, E}
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State Space Graphs

• State space graph: A mathematical 
representation of a search problem
• Nodes are (abstracted) world configurations

• Arcs represent successors (action results)

• The goal test is a set of goal nodes (maybe only one)

• In a state space graph, each state occurs only 
once!

• We can rarely build this full graph in memory 
(it’s too big), but it’s a useful idea
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Search Trees

• A search tree:
• A “what if” tree of plans and their outcomes

• The start state is the root node

• Children correspond to successors

• Nodes show states, but correspond to PLANS that achieve those states

• For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures
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State Space Graphs vs. Search Trees
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on demand – and 
we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph
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Tree Search
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Searching with a Search Tree

• Search:
• Expand out potential plans (tree nodes)

• Maintain a fringe of partial plans under consideration

• Try to expand as few tree nodes as possible

8



General Tree Search

• Important ideas:
• Fringe
• Expansion
• Exploration strategy

• Main question: which fringe nodes to explore?
9



General Tree Search 2
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function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier



Depth-First (Tree) Search
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Strategy: expand a 
deepest node first

Implementation: 
Fringe is a LIFO stack
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Breadth-First (Tree) Search
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Search

Tiers

Strategy: expand a 
shallowest node first

Implementation: Fringe 
is a FIFO queue
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Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?

• Optimal: Guaranteed to find the least cost path?

• Time complexity?

• Space complexity?

• Cartoon of search tree:
• b is the branching factor

• m is the maximum depth

• solutions at various depths

• Number of nodes in entire tree?
• 1 + b + b2 + … + bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers
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Depth-First Search (DFS) Properties

• What nodes DFS expand?
• Some left prefix of the tree.
• Could process the whole tree!
• If m is finite, takes time O(bm)

• How much space does the fringe take?
• Only has siblings on path to root, so O(bm)

• Is it complete?
• m could be infinite, so only if we prevent cycles 

(more later)

• Is it optimal?
• No, it finds the “leftmost” solution, regardless of 

depth or cost

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers
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Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
• Processes all nodes above shallowest solution

• Let depth of shallowest solution be s

• Search takes time O(bs)

• How much space does the fringe take?
• Has roughly the last tier, so O(bs)

• Is it complete?
• s must be finite if a solution exists

• Is it optimal?
• Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes
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Iterative Deepening

• Idea: get DFS’s space advantage with BFS’s 
time / shallow-solution advantages
• Run a DFS with depth limit 1.  If no solution…

• Run a DFS with depth limit 2.  If no solution…

• Run a DFS with depth limit 3.  …..

• Isn’t that wastefully redundant?
• Generally most work happens in the lowest level 

searched, so not so bad!

…
b
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Finding a Least-Cost Path

• BFS finds the shortest path in terms of number of actions, but not the 
least-cost path

• A similar algorithm would find the least-cost path  

17
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Uniform Cost Search
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Uniform Cost Search 2
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function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the frontier as a priority queue using node’s path_cost as the priority

add initial state of problem to frontier with path_cost = 0

loop do 

if the frontier is empty then

return failure

choose a node (with minimal path_cost) and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier with path_cost = path_cost(node) + cost(node, child)
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…

Uniform Cost Search (UCS) Properties
• What nodes does UCS expand?

• Processes all nodes with cost less than cheapest solution!
• If that solution costs C* and arcs cost at least  , then the 

“effective depth” is roughly C*/

• Takes time O(bC*/) (exponential in effective depth)

• How much space does the fringe take?
• Has roughly the last tier, so O(bC*/)

• Is it complete?
• Assuming best solution has a finite cost and minimum arc cost 

is positive, yes!

• Is it optimal?
• Yes!  (Proof next via A*)

b

C*/ “tiers”
c  3

c  2

c  1
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The One Queue

• All these search algorithms are the 
same except for fringe strategies
• Conceptually, all fringes are priority 

queues (i.e. collections of nodes with 
attached priorities)

• Practically, for DFS and BFS, you can 
avoid the log(n) overhead from an 
actual priority queue, by using stacks 
and queues

• Can even code one implementation that 
takes a variable queuing object

21



Informed Search
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Search Heuristics

• A heuristic is:
• A function that estimates how close a state is to a goal

• Designed for a particular search problem

• Pathing? 

• Examples: Manhattan distance, Euclidean distance for pathing

23
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Greedy Search

• Expand the node that seems closest to the goal

• Is it optimal?
• No. Resulting path to Bucharest is not the shortest!
• Why?
• Heuristics might be wrong 24



A* Search: Combining UCS and Greedy

• Uniform-cost orders by path cost, or backward cost 𝑔(𝑛)
• Greedy orders by goal proximity, or forward cost ℎ(𝑛)

• A* Search orders by the sum: 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)

25
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When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

26
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A* Search
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function A-STAR-SEARCH(problem) returns a solution, or failure

initialize the frontier as a priority queue using f(n)=g(n)+h(n) as the priority

add initial state of problem to frontier with priority f(S)=0+h(S)

loop do 

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier with f(n)=g(n)+h(n) 
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Is A* Optimal?

• What went wrong?

• Actual bad goal cost < estimated good goal cost

• We need estimates to be less than actual costs!
29
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Admissible Heuristics

• A heuristic ℎ is admissible (optimistic) if
0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗(𝑛) is the true cost to a nearest goal

• Examples:

• Coming up with admissible heuristics is most of what’s involved in 
using A* in practice

30
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Optimality of A* Tree Search

• Assume:
• A is an optimal goal node

• B is a suboptimal goal node

• h is admissible

• Claim:
• A will exit the fringe before B

31
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Optimality of A* Tree Search: Blocking

• Proof:
• Imagine B is on the fringe

• Some ancestor n of A is on the fringe, 
too (maybe A!)

• Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

32

Definition of f-cost

Admissibility of h

…

h = 0 at a goal



Optimality of A* Tree Search: Blocking 2

• Proof:
• Imagine B is on the fringe

• Some ancestor n of A is on the fringe, 
too (maybe A!)

• Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

33

B is suboptimal

h = 0 at a goal

…



Optimality of A* Tree Search: Blocking 3

• Proof:
• Imagine B is on the fringe

• Some ancestor n of A is on the fringe, 
too (maybe A!)

• Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

• All ancestors of A expand before B

• A expands before B

• A* search is optimal

34
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Comparison
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Greedy Uniform Cost A*



Creating Heuristics

• Most of the work in solving hard search problems 
optimally is in coming up with admissible heuristics

• Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available

• Inadmissible heuristics are often useful too
36
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Example: 8 Puzzle

• What are the states?

• How many states?

• What are the actions?

• How many successors from the start state?

• What should the costs be? 37

Start State Goal State
Actions

Admissible
heuristics?



Example: 8 Puzzle - 2

• Heuristic: Number of tiles misplaced

• Why is it admissible?

• h(start) =

• This is a relaxed-problem heuristic

38

8

Average nodes expanded 
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



Example: 8 Puzzle - 3

• What if we had an easier 8-puzzle 
where any tile could slide any 
direction at any time, ignoring 
other tiles?

• Total Manhattan distance

• Why is it admissible?

• h(start) =
39

3 + 1 + 2 + … = 18

Average nodes expanded 
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State



Example: 8 Puzzle - 4

• How about using the actual cost as a heuristic?
• Would it be admissible?

• Would we save on nodes expanded?

• What’s wrong with it?

• With A*: a trade-off between quality of estimate and work per node
• As heuristics get closer to the true cost, you will expand fewer nodes but 

usually do more work per node to compute the heuristic itself

40



Constraint Satisfaction Problems
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Constraint Satisfaction Problems

42

N variables

x1

x2

domain D

constraints

states goal test successor function

partial assignment complete; satisfies constraints assign an unassigned variable



What is Search For?

• Assumptions about the world: a single agent, deterministic actions, fully 
observed state, discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems

43



Constraint Satisfaction Problems

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables 𝑋𝑖 with values 

from a domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying 

allowable combinations of values for subsets 
of variables

• Allows useful general-purpose algorithms 
with more power than standard search 
algorithms 44



Constraint Graphs

• Binary CSP: each constraint relates (at most) 
two variables

• Binary constraint graph: nodes are variables, 
arcs show constraints

• General-purpose CSP algorithms use the 
graph structure to speed up search. E.g., 
Tasmania is an independent subproblem!

45



Standard Search Formulation

• Standard search formulation of CSPs

• States defined by the values assigned so 
far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an 

unassigned variable
• Goal test: the current assignment is 

complete and satisfies all constraints

• We’ll start with the straightforward, 
naïve approach, then improve it

46

→Can be any unassigned variable



Search Methods: DFS

• At each node, assign a value from the 
domain to the variable

• Check feasibility (constraints) when 
the assignment is complete

• What problems does the naïve search 
have?

47[Demo: coloring -- dfs]



Backtracking Search

• Backtracking search is the basic uninformed algorithm for 
solving CSPs

• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering -> better 

branching factor! 
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Can solve N-queens for 𝑁 ≈ 25

48



Example

49[Demo: coloring -- backtracking]



function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure then

return result

remove {var=value} from assignment

return failure



function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure then

return result

remove {var=value} from assignment

return failure

No need to check consistency for a 
complete assignment

Checks consistency at each assignment

What are choice 
points?

Backtracking = DFS + variable-ordering + 
fail-on-violation



Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?

52



Filtering: Forward Checking
• Filtering: Keep track of domains for unassigned variables and cross off bad 

options

• Forward checking: Cross off values that violate a constraint when added to 
the existing assignment

53
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[Demo: coloring -- forward checking]

failure is detected if some variables have no values remaining



Filtering: Forward Checking 2
• Filtering: Keep track of domains for unassigned variables and cross off bad 

options

• Forward checking: Cross off values that violate a constraint when added to 
the existing assignment

54
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[Demo: coloring -- forward checking]

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has 
most two variables): nodes are variables, edges show constraints



Filtering: Forward Checking 3
• Filtering: Keep track of domains for unassigned variables and cross off bad 

options

• Forward checking: Cross off values that violate a constraint when added to 
the existing assignment

55
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Filtering: Forward Checking 4
• Filtering: Keep track of domains for unassigned variables and cross off bad 

options

• Forward checking: Cross off values that violate a constraint when added to 
the existing assignment

56
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FAIL – variable with 
no possible values



Filtering: Constraint Propagation

• Forward checking propagates information from assigned to unassigned 
variables, but doesn't provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

57
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Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the 
head which could be assigned without violating a constraint

Forward checking?
A special case
Enforcing consistency of arcs pointing to each new assignment 58

Delete from the tail!
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Arc Consistency of an Entire CSP

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment 
• What’s the downside of enforcing arc consistency?

59

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW
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Arc Consistency of Entire CSP 2

• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-
consistency, repeating the cycle until no domains change for a whole 
cycle

• AC-3 (Arc Consistency Algorithm #3): 
• A more efficient algorithm ignoring constraints that have not been modified 

since they were last analyzed

60
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function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗)  returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed



function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗)  returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed

Constraint Propagation!



function AC-3(csp) returns the CSP, possibly with reduced domains

initialize a queue of all the arcs in csp

while queue is not empty do

(𝑋𝑖 , 𝑋𝑗) ⟵ REMOVE_FIRST(queue)

if REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗) then

for each 𝑋𝑘 in NEIGHBORS[𝑋𝑖] do

add (𝑋𝑘 , 𝑋𝑖) to queue

function REMOVE_INCONSISTENT_VALUES(𝑋𝑖 , 𝑋𝑗)  returns true iff succeeds

removed ⟵ false

for each x in DOMAIN[𝑋𝑖] do

if no value y in DOMAIN[𝑋𝑗] allows (x,y) to satisfy the constraint 𝑋𝑖 ⟷ 𝑋𝑗 then

delete x from DOMAIN[𝑋𝑖]; removed ⟵ true

return removed … but detecting all possible future 
problems is NP-hard – why?

• An arc is added after a removal of 
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values

• Total times of removal: 𝑂 𝑛𝑑

• After a removal, ≤ 𝑛 arcs added

• Total times of adding arcs: 𝑂(𝑛2𝑑)

• Check arc consistency per arc: 𝑂(𝑑2)

• Complexity: 𝑂(𝑛2𝑑3)

• Can be improved to 𝑂(𝑛2𝑑2)



Example of AC-3

64

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T

64



Example of AC-3 2

65

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

WA
SA

NT
Q

NSW

V

T

Remember: Delete from the tail!



Example of AC-3 3

66

Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA 
WA->NT
SA->NT
Q->NT

WA
SA

NT
Q

NSW

V

T



Example of AC-3 4

67
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Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA 
WA->NT
SA->NT
Q->NT



Example of AC-3 5
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WA
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Queue:
SA->WA
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA 
WA->NT
SA->NT
Q->NT



Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left

• Can have multiple solutions left

• Can have no solutions left (and not know it)

• Arc consistency still runs inside a 
backtracking search!

• And will be called many times

69
[Demo: coloring -- arc consistency]

[Demo: coloring -- forward checking]



function BACKTRACKING_SEARCH(csp) returns a solution, or failure

return RECURSIVE_BACKTRACKING({}, csp)

function RECURSIVE_BACKTRACKING(assignment, csp) returns a solution, or failure

if assignment is complete then

return assignment

var ⟵ SELECT_UNASSIGNED_VARIABLE(VARIABLES[csp], assignment, csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment given CONSTRAINTS[csp] then

add {var=value} to assignment

result ⟵ RECURSIVE_BACKTRACKING(assignment, csp)

if result ≠ failure, then

return result

remove {var=value} from assignment

return failure

AC-3(𝑐𝑠𝑝)



Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?
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Ordering: Minimum Remaining Values

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering
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Ordering: Least Constraining Value

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least constraining 

value
• I.e., the one that rules out the fewest values in the 

remaining variables
• Note that it may take some computation to determine 

this!  (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible
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Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?
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Problem Structure

• For general CSPs, worst-case complexity with backtracking 
algorithm is O(dn)

• When the problem has special structure, we can often solve 
the problem more efficiently

• Special Structure 1: Independent subproblems
• Example: Tasmania and mainland do not interact
• Connected components of constraint graph
• Suppose a graph of 𝑛 variables can be broken into 

subproblems, each of only 𝑐 variables:
• Worst-case complexity is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec
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Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(nd2) 
time
• Compare to general CSPs, where worst-case time is O(dn)
• How?

• This property also applies to probabilistic reasoning (later): an example of the 
relation between syntactic restrictions and the complexity of reasoning
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Tree-Structured CSPs 2

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children
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Tree-Structured CSPs 3

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)
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Tree-Structured CSPs 4

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)
• Assign forward: For 𝑖 = 1: 𝑛, assign 𝑋𝑖 consistently with Parent(𝑋𝑖)

• Runtime: 𝑂(𝑛𝑑2) (why?)
• Can always find a solution when there is one (why?) 79

Remove backward 𝑂(𝑛𝑑2) : 𝑂 𝑑2 per arc and 𝑂(𝑛) arcs
Assign forward 𝑂(𝑛𝑑): 𝑂(𝑑) per node and 𝑂(𝑛) nodes



Tree-Structured CSPs 5

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass
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Tree-Structured CSPs 6

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once 

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• When 𝑋𝑖 was visited, we enforced arc consistency of Parent(𝑋𝑖) → 𝑋𝑖 by reducing the domain 

of Parent(𝑋𝑖). By definition, for every value in the reduced domain of Parent(𝑋𝑖), there was 

some 𝑥 in the domain of 𝑋𝑖 which could be assigned without violating the constraint involving 

Parent(𝑋𝑖) and 𝑋𝑖

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass
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Tree-Structured CSPs 7

• Remove backward: For 𝑖 = 𝑛: 2, apply RemoveInconsistent(Parent(𝑋𝑖),𝑋𝑖)

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once. 

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass

• Domain of 𝑋𝑖 would not have been reduced after 𝑋𝑖 is visited because 𝑋𝑖’s children were 

visited before 𝑋𝑖. Domain of Parent(𝑋𝑖) could have been reduced further. Arc consistency 

would still hold by definition.
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Tree-Structured CSPs 8

• Assign forward: For 𝑖=1:𝑛, assign 𝑋𝑖 consistently with Parent(𝑋𝑖)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

• Proof: Follow the backtracking algorithm (on the reduced domains and with the same 
ordering). Induction on position Suppose we have successfully reached node 𝑋𝑖. In the 
current step, the potential failure can only be caused by the constraint between 𝑋𝑖 and 
Parent(𝑋𝑖), since all other variables that are in a same constraint of 𝑋𝑖 have not 
assigned a value yet. Due to the arc consistency of Parent(𝑋𝑖) → 𝑋𝑖, there exists a 
value 𝑥 in the domain of 𝑋𝑖 that does not violate the constraint. So we can successfully 
assign value to 𝑋𝑖 and go to the next node. By induction, we can successfully assign a 
value to a variable in each step of the algorithm. A solution is found in the end.

83



Local Search

84



Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some 
planning and optimization problems

• Typically use a complete-state formulation
• e.g., all variables assigned in a CSP (may not satisfy all the constraints)

• Different “complete”:
• An assignment is complete means that all variables are assigned a value

• An algorithm is complete means that it will output a solution if there exists 
one

85



Iterative Algorithms for CSPs

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values
• No fringe! Live on the edge.

• Algorithm: While not solved,
• Variable selection: randomly select any 

conflicted variable
• Value selection: min-conflicts heuristic

• Choose a value that violates the fewest constraints
• v.s., hill climb with h(x) = total number of violated 

constraints (break tie randomly)
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Example: 4-Queens

• States: 4 queens in 4 columns (44 = 256 states)

• Operators: move queen in column

• Goal test: no attacks

• Evaluation: h(n) = number of attacks
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Performance of Min-Conflicts

• Given random initial state, can solve n-queens in almost constant 
time for arbitrary n with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio
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Local Search vs Tree Search

• Tree search keeps unexplored alternatives on the fringe (ensures 
completeness)

• Local search: improve a single option until you can’t make it better 
(no fringe!)

• New successor function: local changes

• Generally much faster and more memory efficient (but incomplete
and suboptimal)

89



Example

• Local search may get stuck in a local optima

90

ℎ = 1



Hill Climbing

• Simple, general idea:
• Start wherever

• Repeat: move to the best neighboring state

• If no for current, quit

• What’s bad about this approach?

• What’s good about it?

91

Complete?

Optimal?

No!

No!



Hill Climbing Diagram

92

In identification problems, could be a function measuring how close you are to a 
valid solution, e.g., −1 × #conflicts in n-Queens/CSP

What’s the difference between 
shoulder and flat local maximum 
(both are plateau)?



Quiz

• Starting from X, where do you end up ?

• Starting from Y, where do you end up ?

• Starting from Z, where do you end up ?

93



Hill Climbing (Greedy Local Search)

94

How to apply Hill Climbing to 𝑛-Queens? How is it different from Iterative Improvement?

Define a state as a board with 𝑛 queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a 
single queen to another square in the same column



Hill Climbing (Greedy Local Search) 2

95

What if there is a tie?

Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails



Local Search: Summary

• Maintain a constant number of current nodes or states, and move to 
“neighbors” or generate “offsprings” in each iteration
• Do not maintain a search tree or multiple paths

• Typically do not retain the path to the node

• Advantages
• Use little memory

• Can potentially solve large-scale problems or get a reasonable (suboptimal or 
almost feasible) solution
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Adversarial Search
Cost -> Utility!
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“Standard” Games

• Standard games are deterministic, observable, 
two-player, turn-taking, zero-sum

• Game formulation:
• States: S (start at s0)

• Players: P={1...N} (usually take turns)

• Actions: A (may depend on player / state)

• Transition Function: SxA → S

• Terminal Test: S → {t,f}

• Terminal Utilities: SxP → R

• Solution for a player is a policy: S → A
98



Single-Agent Trees: Value of a State

99

Non-Terminal States:

8

2 0 2 6 4 6… …
Terminal States:

Value of a state: 
The best achievable 

outcome (utility) 
from that state



Adversarial Game Trees: Minimax Values

100

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Minimax Search

• Deterministic, zero-sum games:
• Tic-tac-toe, chess, checkers

• One player maximizes result

• The other minimizes result

• Minimax search:
• A state-space search tree

• Players alternate turns

• Compute each node’s minimax value: the best 
achievable utility against a rational (optimal) 
adversary

101

8 2 5 6

max

min2 5

5

Terminal values:
part of the game 

Minimax values:
computed recursively



Minimax Implementation (Dispatch)
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def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Example

• Actions?
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12 8 5 23 2 144 6

3 2 2

3



Pseudocode for Minimax Search

104

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)



Quiz

• Minimax search belongs to which class?

A) BFS
B) DFS
C) UCS
D) A*
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Minimax Efficiency

• How efficient is minimax?
• Just like (exhaustive) DFS

• Time: O(bm)

• Space: O(bm)

• Example: For chess, b  35, m  100
• Exact solution is completely infeasible

• But, do we need to explore the whole tree?

• Humans can’t do this either, so how do we play chess?

• Bounded rationality – Herbert Simon
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Resource Limits: Game Tree Pruning

107

12 8 5 23 2 14

3 <=2 2

3

The order of generation matters: more pruning
is possible if good moves come first



Game Tree Pruning: Alpha-Beta Pruning

• General configuration (MIN version)

• We’re computing the MIN-VALUE at some node n

• We’re looping over n’s children

• n’s estimate of the childrens’ min is dropping

• Who cares about n’s value?  MAX

• Let a be the best value that MAX can get at any choice 

point along the current path from the root

• If n becomes worse than a, MAX will avoid it, so we can 

stop considering n’s other children (it’s already bad 

enough that it won’t be played)

• MAX version is symmetric
108

MAX

MIN

MAX

MIN

a

n



Alpha-Beta Implementation

109

α: MAX’s best option on path to root
β: MIN’s best option on path to root

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v



Quiz
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Which branches are pruned?
(Left to right traversal)
(Select all that apply)



Quiz 2
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Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n



Quiz 2 - 1
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10

10

>=100 2

<=2



Alpha-Beta Pruning Properties

• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Chess: 1M nodes/move => depth=8, respectable
• Full search of complicated games, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute) 113

10 10 0

max

min



Depth-limited search

• Problem: In realistic games, cannot search to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation function for non-

terminal positions

• Example:
• Suppose we have 100 seconds, can explore 10K nodes / sec
• So can check 1M nodes per move
• For chess, 𝑏 ≈ 35 so reaches about depth 4 – not so good
• - reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime algorithm
114
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Expectimax Search

• Why wouldn’t we know what the result of an action will be?
• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Unpredictable humans: humans are not perfect
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) 
outcomes

• Expectimax search: compute the average score under optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities
• I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying uncertain-result problems as Markov 
Decision Processes

115
[Demo: min vs exp (L7D1,2)]

10 4 5 7

max

chance

10 10 9 100



Expectimax Pseudocode
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def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:

p = probability(successor)
v += p * value(successor)

return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode 3

• function value( state )
• if  state.is_leaf
• return  state.value

• if  state.player is  MAX
• return max a in state.actions value( state.result(a) )

• if  state.player is  MIN
• return  min a in state.actions value( state.result(a) )

• if  state.player is  CHANCE
• return  sum s in state.next_states P( s ) * value( s )
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Example

118

12 9 6 03 2 154 6



Quiz

119

Expectimax tree search:
Which action do we 
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right



Quiz 2
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Expectimax tree search:
Which action do we 
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right



Expectimax: Depth-Limited
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…

…

492 362 …

400 300

Estimate of true 
expectimax value 

(which would 
require a lot of 

work to compute)



Quiz: Informed Probabilities
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• Let’s say you know that your opponent is actually running a depth 2 minimax, using the 
result 80% of the time, and moving randomly otherwise

• Question: What tree search should you use?  

0.1          0.9

• Answer: Expectimax!
• To figure out EACH chance node’s probabilities, 

you have to run a simulation of your opponent

• This kind of thing gets very slow very quickly

• Even worse if you have to simulate your 
opponent simulating you…

• … except for minimax and maximax, which
have the nice property that it all collapses into 
one game tree

This is basically how you would model a human, except for their utility: their utility might be the 
same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a 
slightly different utility (like another person navigating in the office)



Dangerous Pessimism/Optimism
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Assuming chance when the world is adversarialAssuming the worst case when it’s not likely



Assumptions vs. Reality

124

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

[Demos: world assumptions (L7D3,4,5,6)]

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman



MEU Principle

• Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
• Given any preferences satisfying these constraints, there exists a real-valued

function U such that:

• i.e. values assigned by U preserve preferences of both prizes and lotteries!

• Maximum expected utility (MEU) principle:
• Choose the action that maximizes expected utility
• Note: an agent can be entirely rational (consistent with MEU) without ever representing or 

manipulating utilities and probabilities
• E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner
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Markov Decision Processes
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Markov Decision Processes

• An MDP is defined by:
• A set of states s  S
• A set of actions a  A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’) 
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon

127
[Demo – gridworld manual intro (L8D1)]



What is Markov about MDPs?

• “Markov” generally means that given the present state, the 
future and the past are independent

• For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

• This is just like search, where the successor function could only 
depend on the current state (not the history)

128

Andrey Markov 
(1856-1922)



Policies

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal 

policy *: S → A
• A policy  gives an action for each state

• An optimal policy is one that maximizes        
expected utility if followed

• An explicit policy defines a reflex agent

129

Optimal policy when R(s, a, s’) = -0.03 for 
all non-terminals s



Optimal Policies

130
R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



MDP Search Trees

• Each MDP state projects an expectimax-like search tree

131

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

s,a,s’

s is a state

(s, a) is a q-
state



Utilities of Sequences: Discounting

• How to discount?
• Each time we descend a level, we multiply in the 

discount once

• Why discount?
• Reward now is better than later

• Can also think of it as a 1-gamma chance of ending 
the process at every step

• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

• U([1,2,3]) < U([3,2,1])
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Utilities of Sequences: Stationary Preferences

• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:
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Quiz: Discounting

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

• Quiz 1: For  = 1, what is the optimal policy?

• Quiz 2: For  = 0.1, what is the optimal policy?

• Quiz 3: For which  are West and East equally good when in state d?

134
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Infinite Utilities?!

• Problem: What if the game lasts forever?  Do we get infinite rewards?

• Solutions:
• Finite horizon: (similar to depth-limited search)

• Terminate episodes after a fixed T steps (e.g. life)
• Gives nonstationary policies ( depends on time left)

• Discounting: use 0 <  < 1

• Smaller  means smaller “horizon” – shorter term focus

• Absorbing state: guarantee that for every policy, a terminal state will eventually be 
reached (like “overheated” for racing)
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Racing Search Tree

• We’re doing way too much work 
with expectimax!

• Problem: States are repeated 
• Idea: Only compute needed quantities 

once

• Problem: Tree goes on forever
• Idea: Do a depth-limited computation, 

but with increasing depths until 
change is small

• Note: deep parts of the tree eventually 
don’t matter if γ < 1
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Optimal Quantities

• The value (utility) of a state s:
• V*(s) = expected utility starting in s and 

acting optimally

• The value (utility) of a q-state (s,a):
• Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

• The optimal policy:
• *(s) = optimal action from state s
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a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Values of States

• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action

• Average sum of (discounted) rewards

• This is just what expectimax computed!

• Recursive definition of value:
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a

s

s, a

s,a,s’

s’



Time-Limited Values

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in k more time 
steps
• Equivalently, it’s what a depth-k expectimax would give from s

139
[Demo – time-limited values (L8D4)]



Value Iteration

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence, which yields V*

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do
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a

Vk+1(s)

s, a

s,a,s’

Vk(s’)



Example

141

0             0             0

S: 1

Assume no discount!

F: .5*2+.5*2=2



Convergence

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

• Case 2: If the discount is less than 1

• Proof Sketch: 
• For any state Vk and Vk+1 can be viewed as depth k+1 

expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge 142



Value Iteration (Revisited)

• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the 𝑉𝑘 vectors are also interpretable as 

time-limited values
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a

V(s)

s, a
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The Bellman Equations

144

How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



Policy Extraction: Computing
Actions from Values
• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the 
values
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Policy Extraction: Computing
Actions from Q-Values
• Let’s imagine we have the optimal

q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than 
values!
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Problems with Value Iteration

• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values
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Policy Iteration

• Alternative approach for optimal values:
• Step 1: Policy Evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence

• Step 2: Policy Improvement: update policy using one-step look-ahead with 
resulting converged (but not optimal!) utilities as future values

• Repeat steps until policy converges

• This is Policy Iteration
• It’s still optimal!

• Can converge (much) faster under some conditions
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Policy Evaluation: Fixed Policies

• Expectimax trees max over all actions to compute the optimal values

• If we fix some policy (s), then the tree would be simpler – only one action per 
state
• … though the tree’s value would depend on which policy we fixed 149
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s,a,s’

s’

(s)

s

s, (s)

s, (s),s’
s’

Do the optimal action Do what  says to do



Policy Evaluation: Utilities for a Fixed Policy

• Another basic operation: compute the utility of a state s under a 
fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy :
V(s) = expected total discounted rewards starting in s and following 

• Recursive relation (one-step look-ahead / Bellman equation):
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s, (s)
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Policy Evaluation: Implementation

• How do we calculate the V’s for a fixed policy ?

• Idea 1: Turn recursive Bellman equations into updates

(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with MATLAB (or your favorite linear system solver)

151

(s)

s

s, (s)

s, (s),s’
s’



Policy Iteration

• Evaluation: For fixed current policy 𝜋, find values
with policy evaluation:
• Iterate until values converge:

• Improvement: For fixed values, get a better (why? exercise) policy 
using policy extraction
• One-step look-ahead:
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Value Iteration vs. Policy Iteration

• Both value iteration and policy iteration compute the same thing (all optimal 
values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because 

we consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done) 

• Both are dynamic programs for solving MDPs
153



Reinforcement Learning
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What Just Happened?

• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP
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Reinforcement Learning

• What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

156

𝑉𝑘+1 𝑠 = max
𝑎



𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎



𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎



𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:



Reinforcement Learning 2

• Basic idea:
• Receive feedback in the form of rewards

• Agent’s utility is defined by the reward function

• Must (learn to) act so as to maximize expected rewards

• All learning is based on observed samples of outcomes!
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Environment

Agent

Actions: a
State: s

Reward: r



Reinforcement Learning 3

• Still assume a Markov decision process (MDP):
• A set of states s  S

• A set of actions (per state) A

• A model T(s,a,s’)

• A reward function R(s,a,s’)

• Still looking for a policy (s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do

• Must actually try actions and states out to learn
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Offline (MDPs) vs. Online (RL)
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Offline Solution Online Learning



Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to 
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free. 
we’ll cover only in context of Q-learning  
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Model-Based Reinforcement Learning

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before

161(and repeat as needed)



Example: Model-Based RL
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Input Policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Analogy: Expected Age
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Goal: Compute expected age of students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to 
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free. 
we’ll cover only in context of Q-learning  

164



Passive Model-Free Reinforcement Learning

• Simplified task: policy evaluation
• Input: a fixed policy (s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning! You actually take actions in the world
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Direct Evaluation

• Goal: Compute values for each state under 

• Idea: Average together observed sample values
• Act according to 

• Every time you visit a state, write down what the sum of discounted rewards 
turned out to be

• Average those samples

• This is called direct evaluation
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Example: Direct Evaluation
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Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Problems with Direct Evaluation

• What’s good about direct evaluation?
• It’s easy to understand

• It doesn’t require any knowledge of T, R

• It eventually computes the correct average values, 
using just sample transitions

• What bad about it?
• It wastes information about state connections

• Each state must be learned separately

• So, it takes a long time to learn
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Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to 
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free. 
we’ll cover only in context of Q-learning  
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Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how do we take a weighted average without knowing the weights?
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• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’
(by doing the action!) and average

Sample-Based Policy Evaluation?
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(s)

s

s, (s)

s1's2' s3's'

s, (s),s’

Almost!  But we can’t 
rewind time to get sample 
after sample from state s



Temporal Difference Value Learning

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)

• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!

• Move values toward value of whatever successor occurs: running average
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(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:



Example: Temporal Difference Value Learning

173

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Problems with TD Value Learning

• TD value leaning is a model-free way to do policy evaluation, 
mimicking Bellman updates with running sample averages

• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values

• Makes action selection model-free too!
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Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to 
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free. 
we’ll cover only in context of Q-learning  
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Q-Value Iteration

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:
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Q-Learning

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)

• Consider your old estimate:

• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

177
[Demo: Q-learning – gridworld (L10D2)]

[Demo: Q-learning – crawler (L10D3)]

no longer policy 
evaluation! 



Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if 
you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)
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Reinforcement Learning -- Overview

• Passive Reinforcement Learning (= how to learn from experiences)
• Model-based Passive RL

• Learn the MDP model from experiences, then solve the MDP

• Model-free Passive RL
• Forego learning the MDP model, directly learn V or Q:

• Value learning – learns value of a fixed policy; 2 approaches: Direct Evaluation & TD Learning
• Q learning – learns Q values of the optimal policy (uses a Q version of TD Learning)

• Active Reinforcement Learning (= agent also needs to decide how to 
collect experiences)
• Key challenges:

• How to efficiently explore?
• How to trade off exploration <> exploitation

• Applies to both model-based and model-free. 
we’ll cover only in context of Q-learning  
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Active Reinforcement Learning

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning!  You actually take actions in the world and find 

out what happens…
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Exploration vs. Exploitation
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How to Explore?

• Several schemes for forcing exploration
• Simplest: random actions (-greedy)

• Every time step, flip a coin

• With (small) probability , act randomly

• With (large) probability 1-, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around 

once learning is done

• One solution: lower  over time

• Another solution: exploration functions
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[Demo: Q-learning – manual exploration – bridge grid (L10D5)] 

[Demo: Q-learning – epsilon-greedy -- crawler (L10D3)]



Exploration Functions

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

•

• Action selection: Use 𝑎 ← argmax𝑎 𝑄(𝑠, 𝑎)
• Note: this propagates the “bonus” back to states that lead to unknown states as well!

183

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L10D4)]

A commonly used ‘exploration function’ is 

𝑓 𝑢, 𝑛 = 𝑢 + 𝑐 log(1/𝛿) /𝑛, which is 
derived by Chernoff-Hoeffding inequality 
and 𝛿 is confidence level



The Story So Far: MDPs and RL
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Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  Value Learning



Linear Regression
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Linear regression

• Use linear relationship to approximate the function of 𝑌 on 𝑋

• How to select the most appropriate linear model?

• Error: Mean squared error (MSE)

• Where 𝑌 and 𝑌 are the true values and predicted values respectively

• Find the linear model with the smallest MSE
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Question

• Given the dataset { 1,1 , 2,4 , 3,5 } and the linear model 𝑌 = 2𝑋 +
1

• What is the mean squared error?

• The predicted points are 1,3 , 2,5 , (3,7)

• So the mean squared error (MSE) is 
1

3
22 + 12 + 22 = 3
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How to get linear model with minimal MSE

• MSE for model parameter 𝜃:

𝐽(𝜃) =
1

𝑁


𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Find an estimator መ𝜃 to minimize 𝐽(𝜃)

• 𝑦 = 𝜃⊤𝑥 + 𝑏 + 𝜀. Then we can write 𝑥′ = 1, 𝑥1, … , 𝑥𝑑 , 𝜃 =
(𝑏, 𝜃1, … , 𝜃𝑑), then 𝑦 = 𝜃⊤𝑥′ + 𝜀

• Note that 𝐽(𝜃) is a convex function in 𝜃, so it has a unique minimal 
point
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Interpretation

Figure credit: Kevin Murphy 189



𝐽(𝜃) is convex

• 𝑓 𝑥 = (𝑦 − 𝑥)2= (𝑥 − 𝑦)2 is convex in 𝑥

• 𝑔 𝜃 = 𝑓 𝜃⊤𝑥
𝑔 1 − 𝑡 𝜃1 + 𝑡𝜃2
= 𝑓 1 − 𝑡 𝜃1

⊤𝑥 + 𝑡𝜃2
⊤𝑥

≤ 1 − 𝑡 𝑓 𝜃1
⊤𝑥 + 𝑡𝑓 𝜃2

⊤𝑥
= 1 − 𝑡 𝑔 𝜃1 + 𝑡𝑔(𝜃2)

• The sum of convex functions is convex

• Thus 𝐽(𝜃) is convex

Check it by yourself !

Convexity of f
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Minimal point (Normal equation)

•
𝜕𝐽(𝜃)

𝜕𝜃
=

2

𝑁
σ𝑖=1
𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 =

2

𝑁
σ𝑖=1
𝑁 𝑥𝑖𝑥𝑖

⊤𝜃 − 𝑥𝑖𝑦𝑖

• Letting the derivative be zero



𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦
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Minimal point (Normal equation) (cont.)

• 𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

• When 𝑋⊤𝑋 is invertible
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• When 𝑋⊤𝑋 is not invertible
መ𝜃 = 𝑋⊤𝑋 †𝑋⊤𝑦

• E.g. The pseudo-inverse of 
1

2
0

is 

1
1

2

0

pseudo-inverse
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Question

• Given the dataset
1,1 , 2,4 , 3,5

compute the normal equation for 𝜃, solve 𝜃 and compute the MSE

• 𝑋 =

𝑥1
⊤

𝑥2
⊤

𝑥3
⊤

=
1 1
1 2
1 3

, 𝑦 =
1
4
5

𝑋⊤𝑋 =
3 6
6 14

, 𝑋⊤𝑦 =
10
24

3 6
6 14

𝜃1
𝜃2

=
10
24

• 𝜃 = −
2

3
, 2 , 𝑦 = −

2

3
+ 2𝑥. MSE=

2

9

𝑋⊤𝑋𝜃 = 𝑋⊤𝑦
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Motivation – large dataset

• Too big to compute directly 
መ𝜃 = 𝑋⊤𝑋 −1𝑋⊤𝑦

• Recall the objective is to minimize the 
loss function

𝐿 𝜃 = 𝐽 𝜃 =
1

𝑁


𝑖=1

𝑁

𝑦𝑖 − 𝜃⊤𝑥𝑖
2

• Gradient descent method
learning rate
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(Batch) gradient descent

• 𝑓𝜃 𝑥 = 𝜃⊤𝑥

195

2

2

2



Stochastic gradient descent
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Mini-Batch Gradient Descent 
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Mini-Batch Gradient Descent (cont.)
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Comparisons
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Searching

• Start with a new initial value 𝜃

• Update 𝜃 iteratively (gradient descent)

• Ends at a minimum
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Uniqueness of minimum for convex objectives
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Learning rate
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Problems of ordinary least squares (OLS)
• Best model is to minimize both the bias and the 

variance

• Ordinary least squares (OLS)
• Previous linear regression
• Unbiased
• Can have huge variance

• Multi-collinearity among data
• When predictor variables are correlated to each other and to the 

response variable
• E.g. To predict patient weight by the height, sex, and diet. But height 

and sex are correlated

• Many predictor variables
• Feature dimension close to number of data points

• Solution
• Reduce variance at the cost of introducing some bias
• Add a penalty term to the OLS equation
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Ridge regression
• Regularization with L2 norm

𝐿𝑅𝑖𝑑𝑔𝑒 = (𝑦 − 𝑋𝜃)2+𝜆 𝜃 2
2

• 𝜆 → 0, መ𝜃𝑅𝑖𝑑𝑔𝑒 → መ𝜃𝑂𝐿𝑆

• 𝜆 → ∞, መ𝜃 → 0

• As 𝜆 becomes larger, the variance decreases but the 
bias increases

• 𝜆: Trade-off between bias and variance
• Choose by cross-validation

• Ridge regression decreases the complexity of a 
model but does not reduce the number of variables 
(compared to other regularization like Lasso) 204



Solution of the ridge regression

•
𝜕𝐿𝑅𝑖𝑑𝑔𝑒

𝜕𝜃
= 2σ𝑖=1

𝑁 𝜃⊤𝑥𝑖 − 𝑦𝑖 𝑥𝑖 + 2𝜆𝜃

• Letting the derivative be zero

𝜆𝐼 +

𝑖=1

𝑁

𝑥𝑖𝑥𝑖
⊤ 𝜃 =

𝑖=1

𝑁

𝑥𝑖𝑦𝑖

• If we write 𝑋 =
𝑥1
⊤

⋮
𝑥𝑁
⊤

=
𝑥1
1 ⋯ 𝑥1

𝑑

⋮
𝑥𝑁
1 ⋯ 𝑥𝑁

𝑑
, 𝑦 =

𝑦1
⋮
𝑦𝑁

, then

𝜆𝐼 + 𝑋⊤𝑋 𝜃 = 𝑋⊤𝑦
መ𝜃ridge = 𝜆𝐼 + 𝑋⊤𝑋 −1𝑋⊤𝑦
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Recall the normal 
equation for OLS is
𝑋⊤𝑋𝜃 = 𝑋⊤𝑦

Always invertible



Logistic Regression
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Classification problem

• Given:
• A description of an instance 𝑥 ∈ 𝑋

• A fixed set of categories:

• Determine:
• The category of                     ,  where 𝑓(𝑥) is a categorization function whose 

domain is      and whose range is 𝐶

• If the category set binary, i.e. 𝐶 = {0, 1} ({false, true}, {negative, positive}) 
then it is called binary classification
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Binary classification

Linearly separable Nonlinearly separable 

208



Cross entropy loss

• Cross entropy
• Discrete case:  𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Continuous case: 𝐻 𝑝, 𝑞 = 𝑥− 𝑝 𝑥 log 𝑞(𝑥)

• Cross entropy loss in classification:
• Red line 𝑝: the ground truth label distribution.

• Blue line 𝑞: the predicted label distribution.
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Example for binary classification

• Cross entropy: 𝐻 𝑝, 𝑞 = −σ𝑥 𝑝 𝑥 log 𝑞(𝑥)

• Given a data point (𝑥, 0) with prediction probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.4

the cross entropy loss on this point is 
𝐿 = −𝑝 𝑦 = 0 𝑥 log 𝑞𝜃 𝑦 = 0 𝑥 − 𝑝 𝑦 = 1 𝑥 log 𝑞𝜃 𝑦 = 1 𝑥

= − log 1 − 0.4 = log
5

3
• What is the cross entropy loss for data point (𝑥, 1) with prediction 

probability 
𝑞𝜃 𝑦 = 1 𝑥 = 0.3
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Cross entropy loss for binary classification

• Loss function for data point (𝑥, 𝑦) with prediction model
𝑝𝜃 ∙ 𝑥

is
𝐿 𝑦, 𝑥, 𝑝𝜃
= −1𝑦=1log 𝑝𝜃 1 𝑥) − 1𝑦=0log 𝑝𝜃(0|𝑥)
= −𝑦 log 𝑝𝜃 1 𝑥 − (1 − y)log (1 − 𝑝𝜃(1|𝑥))
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Binary classification: linear and logistic

• Linear regression:
• Target is predicted by ℎ𝜃 𝑥 = 𝜃⊤𝑥

• Logistic regression

• Target is predicted by ℎ𝜃 𝑥 = 𝜎 𝜃⊤𝑥 =
1

1+ 𝑒−𝜃
⊤𝑥

where

𝜎 𝑧 =
1

1 + 𝑒−𝑧
is the logistic function or the sigmoid function
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Properties for the sigmoid function

• 𝜎 𝑧 =
1

1+ 𝑒−𝑧

• Bounded in (0,1)

• 𝜎(𝑧) → 1 when 𝑧 → ∞

• 𝜎 𝑧 → 0 when 𝑧 → −∞

• 𝜎′ 𝑧 =
𝑑

𝑑𝑧

1

1+𝑒−𝑧
= − 1 + 𝑒−𝑧 −2 ∙ −𝑒−𝑧

=
1

1 + 𝑒−𝑧
𝑒−𝑧

1 + 𝑒−𝑧

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎 𝑧 1 − 𝜎 𝑧
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Logistic regression

• Binary classification

• Cross entropy loss function

• Gradient

is also convex in 𝜃

214



Neural Networks

215



Perceptron

• Inspired by the biological neuron among humans and animals, researchers 
build a simple model called Perceptron

• It receives signals 𝑥𝑖’s, multiplies them with different weights 𝑤𝑖, and 
outputs the sum of the weighted signals after an activation function, step 
function

216



Neural networks

• Neural networks are built by connecting many perceptrons together, 
layer by layer

217



Activation functions

• Sigmoid: 𝜎 𝑧 =
1

1+𝑒−𝑧

• Tanh: tanh 𝑧 =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧

• ReLU (Rectified Linear Unity): 
ReLU 𝑧 = max 0, 𝑧
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Most popular in fully 
connected neural network

Most popular in 
deep learning



Activation function values and derivatives
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• Its derivative
𝜎′ 𝑧 = 𝜎 𝑧 1 − 𝜎 𝑧

• Output range 0,1

• Motivated by biological neurons 
and can be interpreted as the 
probability of an artificial 
neuron “firing” given its inputs

• However, saturated neurons 
make value vanished (why?)

• 𝑓 𝑓 𝑓 ⋯

• 𝑓 0,1 ⊆ 0.5, 0.732

• 𝑓 0.5, 0.732 ⊆ 0.622,0.676

Sigmoid activation function

• Sigmoid

𝜎 𝑧 =
1

1 + 𝑒−𝑧
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ReLU activation function

• ReLU (Rectified linear unity) 
function

ReLU 𝑧 = max 0, 𝑧

221

• Its derivative

ReLU′ 𝑧 = ቊ
1 if 𝑧 > 0
0 if 𝑧 ≤ 0

• ReLU can be approximated by softplus function

• ReLU’s gradient doesn't vanish as x increases

• Speed up training of neural networks
• Since the gradient computation is very simple

• The computational step is simple, no exponentials, no 
multiplication or division operations (compared to others)

• The gradient on positive portion is larger than 
sigmoid or tanh functions

• Update more rapidly

• The left “dead neuron” part can be ameliorated by Leaky 
ReLU



ReLU activation function (cont.)

• ReLU function
ReLU 𝑧 = max 0, 𝑧

222

• The only non-linearity comes from the path 
selection with individual neurons being active or 
not

• It allows sparse representations:
• for a given input only a subset of neurons are active

Sparse propagation of activations and gradients



Single / Multiple layers of calculation

• Single layer function
𝑓𝜃 𝑥 = 𝜎 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2

• Multiple layer function
• ℎ1 𝑥 = 𝜎 𝜃0

1 + 𝜃1
1𝑥1 + 𝜃2

1𝑥2
• ℎ2 𝑥 = 𝜎 𝜃0

2 + 𝜃1
2𝑥1 + 𝜃2

2𝑥2
• 𝑓𝜃 ℎ = 𝜎 𝜃0 + 𝜃1ℎ1 + 𝜃2ℎ2
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𝑥1 𝑥2

𝑓𝜃

𝑥1 𝑥2

𝑓𝜃

ℎ2ℎ1



How to train?

• As previous models, we use gradient descent method to train the 
neural network

• Given the topology of the network (number of layers, number of 
neurons, their connections), find a set of weights to minimize the 
error function

OutputTarget
The set of 
training 

examples
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Gradient descent

• To find a (local) minimum of a function using gradient descent, one 
takes steps proportional to the negative of the gradient (or an 
approximation) of the function at the current point

• For a smooth function 𝑓(𝑥), 
𝜕𝑓

𝜕𝑥
is the direction that 𝑓 increases most 

rapidly. So we apply 

𝑥𝑡+1 = 𝑥𝑡 − 𝜂
𝜕𝑓

𝜕𝑥
(𝑥𝑡)

until 𝑥 converges
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The chain rule

• The challenge in neural network model is that we only know the 
target of the output layer, but don’t know the target for hidden and 
input layers, how can we update their connection weights using the 
gradient descent?

• The answer is the chain rule that you have learned in calculus

𝑦 = 𝑓(𝑔(𝑥))

⇒
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑔(𝑥))𝑔′(𝑥)
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Make a prediction

227

𝑡1

𝑡𝑘

2



Make a prediction (cont.)
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𝑡1

𝑡𝑘

2



Backpropagation
• Assume all the activation functions are sigmoid

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

•
𝜕𝑦𝑘

𝜕𝑤
𝑘,𝑗
(2) = 𝑓(2)

′ 𝑛𝑒𝑡𝑘
(2)

ℎ𝑗
(1)

= 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗
(1)

• ⇒
𝜕𝐸

𝜕𝑤
𝑘,𝑗
(2) = − 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 ℎ𝑗

(1)

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)
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𝛿𝑘
(2)

𝑡1

𝑡𝑘

Output of unit 𝑗

2



Backpropagation (cont.)
• Error function 𝐸 =

1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

•
𝜕𝐸

𝜕𝑦𝑘
= 𝑦𝑘 − 𝑡𝑘

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

•
𝜕𝑦𝑘

𝜕ℎ𝑗
(1) = 𝑦𝑘 1 − 𝑦𝑘 𝑤𝑘,𝑗

(2)

•
𝜕ℎ𝑗

(1)

𝜕𝑤𝑗,𝑚
(1) = 𝑓(1)

′ 𝑛𝑒𝑡𝑗
(1)

𝑥𝑚 = ℎ𝑗
(1)

1 − ℎ𝑗
(1)

𝑥𝑚

•
𝜕𝐸

𝜕𝑤
𝑗,𝑚
(1) = −ℎ𝑗

(1)
1 − ℎ𝑗

(1)
σ𝑘𝑤𝑘,𝑗

2
𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘 𝑥𝑚

= −ℎ𝑗
(1)

1 − ℎ𝑗
(1)



𝑘

𝑤𝑘,𝑗
2
𝛿𝑘
(2)

𝑥𝑚

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚
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𝛿𝑗
(1)

𝑡1

𝑡𝑘

2



Backpropagation algorithms

• Activation function: sigmoid

Initialize all weights to small random numbers

Do until convergence

• For each training example:
1. Input it to the network and compute the network output
2. For each output unit 𝑘, 𝑜𝑘 is the output of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘
3. For each hidden unit 𝑗, 𝑜𝑗 is the output of unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 

𝑘∈next layer

𝑤𝑘,𝑗𝛿𝑘

4. Update each network weight, where 𝑥𝑖 is the output for unit 𝑖

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖
231

• Error function 𝐸 =
1

2
σ𝑘 𝑦𝑘 − 𝑡𝑘

2

• 𝛿𝑘
(2)

= 𝑡𝑘 − 𝑦𝑘 𝑦𝑘 1 − 𝑦𝑘

• ⇒ 𝑤𝑘,𝑗
(2)

← 𝑤𝑘,𝑗
(2)

+ 𝜂𝛿𝑘
(2)
ℎ𝑗
(1)

• 𝛿𝑗
(1)

= ℎ𝑗
(1)

1 − ℎ𝑗
(1) σ𝑘𝑤𝑘,𝑗

2
𝛿𝑘
(2)

• ⇒ 𝑤𝑗,𝑚
(1)

← 𝑤𝑗,𝑚
(1)

+ 𝜂𝛿𝑗
(1)
𝑥𝑚



Formula example for backpropagation

232



Formula example for backpropagation (cont.)
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Calculation example

• Consider the simple network below:

• Assume that the neurons have sigmoid activation function and 
• Perform a forward pass on the network and find the predicted output

• Perform a reverse pass (training) once (target = 0.5) with 𝜂 = 1

• Perform a further forward pass and comment on the result
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Calculation example (cont.)
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• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of 
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is 
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖



Calculation example (cont.)

• Answer (i)
• Input to top neuron = 0.35 × 0.1 + 0.9 × 0.8 = 0.755. Out=0.68
• Input to bottom neuron = 0.35 × 0.4 + 0.9 × 0.6 = 0.68. Out= 0.6637
• Input to final neuron = 0.3 × 0.68 + 0.9 × 0.6637 = 0.80133. Out= 0.69

• (ii) It is both OK to use new or old weights when computing 𝛿𝑗 for hidden units

• Output error 𝛿 = 𝑡 − 𝑜 𝑜 1 − 𝑜 = 0.5 − 0.69 × 0.69 × 1 − 0.69 = −0.0406
• Error for top hidden neuron 𝛿1 = 0.68 × 1 − 0.68 × 0.3 × −0.0406 = −0.00265
• Error for top hidden neuron 𝛿2 = 0.6637 × 1 − 0.6637 × 0.9 × −0.0406 = −0.008156
• New weights for the output layer

• 𝑤𝑜1 = 0.3 − 0.0406 × 0.68 = 0.272392

• 𝑤𝑜2 = 0.9 − 0.0406 × 0.6637 = 0.87305

• New weights for the hidden layer

• 𝑤1𝐴 = 0.1 − 0.00265 × 0.35 = 0.0991

• 𝑤1𝐵 = 0.8 − 0.00265 × 0.9 = 0.7976

• 𝑤2𝐴 = 0.4 − 0.008156 × 0.35 = 0.3971

• 𝑤2𝐵 = 0.6 − 0.008156 × 0.9 = 0.5927

• (iii)
• Input to top neuron = 0.35 × 0.0991 + 0.9 × 0.7976 = 0.7525. Out=0.6797
• Input to bottom neuron = 0.35 × 0.3971 + 0.9 × 0.5927 = 0.6724. Out= 0.662
• Input to final neuron = 0.272392 × 0.6797 + 0.87305 × 0.662 = 0.7631. Out= 0.682
• New error is −0.182, which is reduced compared to old error −0.19

236

• For each output unit 𝑘, 𝑜𝑘 is the output
of unit 𝑘

𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑡𝑘 − 𝑜𝑘

• For each hidden unit 𝑗, 𝑜𝑗 is the output of 
unit 𝑗

𝛿𝑗 ← 𝑜𝑗 1 − 𝑜𝑗 

𝑘∈𝑛𝑒𝑥𝑡 𝑙𝑎𝑦𝑒𝑟

𝑤𝑘,𝑗𝛿𝑘

• Update each network weight, where 𝑥𝑖 is 
the input for unit 𝑗

𝑤𝑗,𝑖 ← 𝑤𝑗,𝑖 + 𝜂𝛿𝑗𝑥𝑖



Bayes Nets: Probabilistic Models
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Uncertainty

• General situation:

• Observed variables (evidence): Agent knows certain things 
about the state of the world (e.g., sensor readings or 
symptoms)

• Unobserved variables: Agent needs to reason about other 
aspects (e.g. where an object is or what disease is present)

• Model: Agent knows something about how the known 
variables relate to the unknown variables

• Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge
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Probabilistic Inference

• Probabilistic inference: compute a desired probability from other known 
probabilities (e.g. conditional from joint)

• We generally compute conditional probabilities 
• P(on time | no reported accidents) = 0.90

• These represent the agent’s beliefs given the evidence

• Probabilities change with new evidence:
• P(on time | no accidents, 5 a.m.) = 0.95

• P(on time | no accidents, 5 a.m., raining) = 0.80

• Observing new evidence causes beliefs to be updated
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Inference by Enumeration

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:

240

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Answer Any Query from Joint Distributions

• Two tools to go from joint to query

• Joint: 𝑃(𝐻1, 𝐻2, 𝑄, 𝐸)

• Query: 𝑃(𝑄 ∣ 𝑒)

1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒

𝑃 𝑒
2. Law of total probability (marginalization, summing out)

𝑃 𝑄, 𝑒 =

ℎ1



ℎ2

𝑃(ℎ1, ℎ2, 𝑄, 𝑒)

𝑃 𝑒 =

𝑞



ℎ1



ℎ2

𝑃(ℎ1, ℎ2, 𝑞, 𝑒)

Only need to compute 𝑃 𝑄, 𝑒 then normalize
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Answer Any Query from Joint Distributions

• Joint distributions are the best!

• Problems with joints
• We aren’t given the joint table

• Usually some set of conditional probability 
tables

• Problems with inference by enumeration
• Worst-case time complexity O(dn) 
• Space complexity O(dn) to store the joint distribution
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Joint

Query

𝑃 𝑎 𝑒)



Build Joint Distribution Using Chain Rule
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Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Quiz

• Variables
• B:   Burglary
• A:   Alarm goes off
• M:  Mary calls
• J:    John calls
• E:   Earthquake!

How many different ways can we write the chain rule?
A. 1
B. 5
C. 5 𝑐ℎ𝑜𝑜𝑠𝑒 5
D. 5!
E. 55
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Answer Any Query from Condition Probability 
Tables
• Bayes’ rule as an example
• Given: 𝑃 𝐸 𝑄 , 𝑃 𝑄 Query: 𝑃(𝑄 ∣ 𝑒)
1. Construct the joint distribution

1. Product Rule or Chain Rule
𝑃 𝐸, 𝑄 = 𝑃 𝐸 𝑄 𝑃(𝑄)

2. Answer query from joint
1. Definition of conditional probability

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

𝑃 𝑒
2. Law of total probability (marginalization, summing out)

𝑃 𝑄 𝑒 =
𝑃 𝑒, 𝑄

σ𝑞𝑃(𝑒, 𝑞)

Only need to compute 𝑃 𝑒, 𝑄 then normalize 245



Bayesian Networks

• One node per random variable, DAG

• One conditional probability table (CPT) per node: 
P(node | Parents(node) )

246

Bayes net

𝐴

𝐵

𝐶

𝐷
𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Answer Any Query from Condition Probability 
Tables

247

Conditional Probability Tables 
and Chain Rule

Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)



Answer Any Query from Condition Probability 
Tables 2

248

Conditional Probability Tables 
and Chain Rule

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐴, 𝐵, 𝐶 𝑃(𝐸|𝐴, 𝐵, 𝐶, 𝐷)

• Problems

▪ Huge

• 𝑛 variables with 𝑑
values

• 𝑑𝑛 entries

▪ We aren’t given the 
right tables



Do We Need the Full Chain Rule?

• Binary random variables

• Fire
• Smoke
• Alarm

249



Answer Any Query from Condition Probability 
Tables

250

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Probabilistic Models

• Models describe how (a portion of) the world 
works

• Models are always simplifications
• May not account for every variable
• May not account for all interactions between 

variables
• “All models are wrong; but some are useful.”

– George E. P. Box

• What do we do with probabilistic models?
• We (or our agents) need to reason about unknown 

variables, given evidence
• Example: explanation (diagnostic reasoning)
• Example: prediction (causal reasoning)
• Example: value of information 251



(General) Bayesian Networks

• One node per random variable, DAG

• One conditional probability table (CPT) per node: 
P(node | Parents(node) )

252

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

Bayes net

𝐴

𝐵

𝐶

𝐷
𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶



Conditional Independence

• P(Toothache, Cavity, Catch)

• If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
• P(+catch | +toothache, +cavity) = P(+catch | +cavity)

• The same independence holds if I don’t have a cavity:
• P(+catch | +toothache, -cavity) = P(+catch| -cavity)

• Catch is conditionally independent of Toothache given Cavity:
• P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Equivalent statements:
• P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
• P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | 

Cavity)
• One can be derived from the other easily 253



Conditional Independence (cont.)

• Unconditional (absolute) independence very rare (why?)

• Conditional independence is our most basic and robust form of knowledge about 
uncertain environments.

• X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if

254



Conditional Independence and the Chain Rule

• Chain rule: 

• Trivial decomposition:

• With assumption of conditional independence:

• Bayes’nets / graphical models help us express conditional independence assumptions

255



Bayes’ Nets: Big Picture

• Two problems with using full joint distribution tables 
as our probabilistic models:
• Unless there are only a few variables, the joint is WAY too big 

to represent explicitly
• Hard to learn (estimate) anything empirically about more 

than a few variables at a time

• Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
• More properly called graphical models
• We describe how variables locally interact
• Local interactions chain together to give global, indirect 

interactions
• We first look at some examples

256



Bayes’ Net Semantics

• A set of nodes, one per variable X

• A directed, acyclic graph

• A conditional distribution for each node

• A collection of distributions over X, one for each 
combination of parents’ values

• CPT: conditional probability table

• Description of a noisy “causal” process

257

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Probabilities in BNs

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, multiply all the relevant conditionals 
together:

• Example:
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=P(-toothache|+cavity)P(+catch|+cavity)P(+cavity)



Probabilities in BNs 2

• Why are we guaranteed that setting

results in a proper joint distribution?  

• Chain rule (valid for all distributions): 

• Assume conditional independences: 

→ Consequence:

• Not every BN can represent every joint distribution

• The topology enforces certain conditional independencies

259



Example: Alarm Network
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B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

B E

A

MJ



Quiz

• Compute 𝑃 −𝑐,+𝑠, −𝑟, +𝑤

A. 0.0

B. 0.0004

C. 0.001

D. 0.036

E. 0.18

F. 0.198

G. 0.324

261



Conditional Independence Semantics 2

• For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

262

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }



Causal Chains

• This configuration is a “causal chain”
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X: Low pressure          Y: Rain                          Z: Traffic

▪ Guaranteed X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

▪ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains 2

• This configuration is a “causal chain”
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▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Causes

• This configuration is a “common cause”

265

▪ Guaranteed X independent of Z ?  
▪ No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due causes both forums busy 
and lab full 

▪ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Cause 2

• This configuration is a “common cause”

266

▪ Guaranteed X and Z independent given Y?

▪ Observing the cause blocks influence 
between effects

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Effect

• Last configuration: two causes of 
one effect (v-structures)
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Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ Proof:
X: Raining Y: Ballgame



Common Effect 2

• Last configuration: two causes of 
one effect (v-structures)

268

Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ (Proved previously)

▪ Are X and Y independent given Z?

▪ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

▪ This is backwards from the other cases

▪ Observing an effect activates influence between 
possible causes

X: Raining Y: Ballgame



Causality?

• When Bayes’ nets reflect the true causal patterns:

• Often simpler (nodes have fewer parents)
• Often easier to think about
• Often easier to elicit from experts

• BNs need not actually be causal

• Sometimes no causal net exists over the domain (especially if 
variables are missing)

• E.g. consider the variables Traffic and Drips
• End up with arrows that reflect correlation, not causation

• What do the arrows really mean?

• Topology may happen to encode causal structure
• Topology really encodes conditional independence

269



Bayes Net Semantics

• A directed, acyclic graph, one node per random 
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each 
combination of parents’ values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:

270



Size of a Bayes Net

• How big is a joint distribution over N 
Boolean variables?

2N

• How big is an N-node net if nodes have up 
to k parents?

O(N * 2k+1)

271

▪ Both give you the power to calculate

▪ BNs: Huge space savings!

▪ Also easier to elicit local CPTs

▪ Also faster to answer queries



Bayes Nets: Assumptions

• Assumptions we are required to make to define the 
Bayes net when given the graph:

• Beyond those “chain rule → Bayes net” conditional 
independence assumptions 

• Often additional conditional independences

• They can be read off the graph

• Important for modeling: understand assumptions 
made when choosing a Bayes net graph

272



Example

• Conditional independence assumptions directly from simplifications 
in chain rule:

• Additional implied conditional independence assumptions?
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X Y Z W

How?



Independence in a BN

• Important question about a BN:
• Are two nodes independent given certain evidence?
• If yes, can prove using algebra (tedious in general)
• If no, can prove with a counter example
• Example:

• Question: are X and Z necessarily independent?
• Answer: no.  Example: low pressure causes rain, which causes traffic.
• X can influence Z, Z can influence X (via Y)
• Addendum: they could be independent: how?

274

X Y Z



The General Case

• General question: in a given BN, are two variables independent (given 
evidence)?

• Solution: analyze the graph

• Any complex example can be broken

into repetitions of the three canonical cases

275



Bayes Ball

• Question: Are X and Y conditionally independent 
given evidence variables {Z}?

1. Shade in Z

2. Drop a ball at X

3. The ball can pass through any active path and 
is blocked by any inactive path (ball can move 
either direction on an edge)

4. If the ball reaches Y, then X and Y are NOT
conditionally independent given Z
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Active Triples Inactive Triples



Example
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Yes R

T

B

T’



Example 2
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R

T

B

D

L

T’

Yes

Yes

Yes



Example 3

• Variables:
• R: Raining

• T: Traffic

• D: Roof drips

• S: I’m sad

• Questions:
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T

S

D

R

Yes



Quiz

• Is 𝑋1 independent from 𝑋6 given 𝑋2?
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Quiz (cont.)

• Is 𝑋1 independent from 𝑋6 given 𝑋2?

• No, the Bayes ball can travel through 𝑋3 and 𝑋5.

281



Quiz 2

• Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?
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Quiz 2 (cont.)

• Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?

• No, the Bayes ball can travel through 𝑋5 and 𝑋6.

283



Bayes Nets: Inference

284



Queries

• What is the probability of this given what I know?

𝑃 𝑞 𝑒 =
𝑃(𝑞, 𝑒)

𝑃(𝑒)
=
σℎ1

σℎ2
𝑃 𝑞, ℎ1, ℎ2, 𝑒

𝑃(𝑒)

• What are the probabilities of all the possible outcomes (given what I know)?

𝑃 𝑄 𝑒 =
𝑃 𝑄, 𝑒

𝑃 𝑒
=
σℎ1

σℎ2
𝑃 𝑄, ℎ1, ℎ2, 𝑒

𝑃(𝑒)

• Which outcome is the most likely outcome (given what I know)?

argmax𝑞∈𝑄 𝑃 𝑞 𝑒 = argmax𝑞∈𝑄
𝑃 𝑞, 𝑒

𝑃 𝑒

= argmax𝑞∈𝑄
σℎ1

σℎ2
𝑃 𝑞, ℎ1, ℎ2, 𝑒

𝑃(𝑒)
285



Inference by Enumeration in Joint 
Distributions
• General case:

• Evidence variables: 
• Query* variable:
• Hidden variables:

286

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize



Inference by Enumeration: Procedural Outline

• Track objects called factors

• Initial factors are local CPTs (one per node)

• Any known values are selected
• E.g. if we know                     , the initial factors are

• Procedure: Join all factors, then sum out all 
hidden variables
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+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+t +l 0.3

-t +l 0.1

+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9



Operation 1: Join Factors

• First basic operation: joining factors

• Combining factors:
• Just like a database join

• Get all factors over the joining variable
• Build a new factor over the union of the variables involved

• Example: Join on R

• Computation for each entry: pointwise products
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+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T



Operation 2: Eliminate

• Second basic operation: marginalization

• Take a factor and sum out a variable

• Shrinks a factor to a smaller one

• A projection operation

• Example:
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+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83



Thus Far: Multiple Join, Multiple Eliminate (= 
Inference by Enumeration)
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Inference by Enumeration in Bayes Net

• Reminder of inference by enumeration:
• Any probability of interest can be computed by summing entries 

from the joint distribution
• Entries from the joint distribution can be obtained from a BN by 

multiplying the corresponding conditional probabilities

P(B | j, m) =  α P(B, j, m) 
=  α e,a P(B, e, a, j, m) 
=  α e,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)

• So inference in Bayes nets means computing sums of 
products of numbers: sounds easy!!

• Problem: sums of exponentially many products!
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B E

A

MJ



Can we do better?

• Consider
• 𝑥1𝑦1𝑧1 + 𝑥1𝑦1𝑧2 + 𝑥1𝑦2𝑧1 + 𝑥1𝑦2𝑧2 + 𝑥2𝑦1𝑧1 + 𝑥2𝑦1𝑧2 + 𝑥2𝑦2𝑧1 + 𝑥2𝑦2𝑧2
• 16 multiplies, 7 adds
• Lots of repeated subexpressions!

• Rewrite as
• (𝑥1 + 𝑥2)(𝑦1 + 𝑦2)(𝑧1 + 𝑧2)
• 2 multiplies, 3 adds



𝑒



𝑎

𝑃 𝐵 𝑃 𝑒 𝑃 𝑎 𝐵, 𝑒 𝑃 𝑗 𝑎 𝑃 𝑚 𝑎)

• Lots of repeated subexpressions!
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= 𝑃 𝐵 𝑃(+𝑒) 𝑃 +𝑎 𝐵,+𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 +𝑎 𝐵,−𝑒 𝑃 𝑗 +𝑎 𝑃(𝑚 | + 𝑎)
+ 𝑃 𝐵 𝑃(+𝑒) 𝑃 −𝑎 𝐵,+𝑒 𝑃 𝑗 −𝑎 𝑃(𝑚 | − 𝑎)
+ 𝑃 𝐵 𝑃(−𝑒) 𝑃 −𝑎 𝐵,−𝑒 𝑃 𝑗 −𝑎 𝑃 𝑚 − 𝑎



Inference by Enumeration vs. Variable 
Elimination
• Why is inference by enumeration so 

slow?
• You join up the whole joint distribution 

before you sum out the hidden variables
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▪ Idea: interleave joining and marginalizing!
▪ Called “Variable Elimination”

▪ Still NP-hard, but usually much faster than 
inference by enumeration



Inference Overview
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• Given random variables 𝑄,𝐻, 𝐸 (query, hidden, evidence)

• We know how to do inference on a joint distribution

𝑃 𝑞 𝑒 = 𝛼 𝑃 𝑞, 𝑒

= 𝛼σℎ∈{ℎ1,ℎ2}
𝑃(𝑞, ℎ, 𝑒)

• We know Bayes nets can break down joint in to CPT factors

𝑃 𝑞 𝑒 = 𝛼σℎ∈{ℎ1,ℎ2}
𝑃 ℎ 𝑃 𝑞 ℎ 𝑃(𝑒|𝑞)

= 𝛼 [𝑃 ℎ1 𝑃 𝑞 ℎ1 𝑃 𝑒 𝑞 + 𝑃 ℎ2 𝑃 𝑞 ℎ2 𝑃 𝑒 𝑞 ]

• But we can be more efficient

𝑃 𝑞 𝑒 = 𝛼 𝑃(𝑒|𝑞)σℎ∈{ℎ1,ℎ2}
𝑃 ℎ 𝑃 𝑞 ℎ

= 𝛼 𝑃 𝑒 𝑞 [𝑃 ℎ1 𝑃 𝑞 ℎ1 + 𝑃 ℎ2 𝑃 𝑞 ℎ2 ]

= 𝛼 𝑃 𝑒 𝑞 𝑃(𝑞)

• Now just extend to larger Bayes nets and a variety of queries

𝐻 𝑄 𝐸
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Answer Any Query from Bayes Net (Previous)
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Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net
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Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Marginalizing Early! (aka VE)
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Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051

+t -l 0.119

-t +l 0.083

-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T



Evidence

• If evidence, start with factors that select that evidence
• No evidence, uses these initial factors:

• Computing                            , the initial factors become:

• We eliminate all vars other than query + evidence
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+r 0.1

-r 0.9

+r +t 0.8

+r -t 0.2

-r +t 0.1

-r -t 0.9

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9

+r 0.1 +r +t 0.8

+r -t 0.2

+t +l 0.3

+t -l 0.7

-t +l 0.1

-t -l 0.9



Evidence II

• Result will be a selected joint of query and evidence
• E.g. for P(L | +r), we would end up with:

• To get our answer, just normalize this!

• That ’s it!
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+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize



Variable Elimination

• General case:
• Evidence variables: 
• Query* variable:
• Hidden variables:

300

All variables

* Works fine with 
multiple query 
variables, too

▪ We want:

▪ Step 1: Select the 
entries consistent 
with the evidence

▪ Step 2: Sum out H to get joint 
of Query and evidence

▪ Step 3: Normalize

▪ Interleave joining and summing out



General Variable Elimination

• Query:

• Start with initial factors:
• Local CPTs (but instantiated by evidence)

• While there are still hidden variables (not Q or 
evidence):
• Pick a hidden variable H
• Join all factors mentioning H
• Eliminate (sum out) H

• Join all remaining factors and normalize
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Variable Elimination

function VariableElimination(Q , e, bn) returns a distribution over Q

factors ← [ ]

for each var in ORDER(bn.vars) do

factors ← [MAKE-FACTOR(var, e)|factors] 

if var is a hidden variable then

factors ← SUM-OUT(var,factors) 

return NORMALIZE(POINTWISE-PRODUCT(factors)) 
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Example

303

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!



Example (cont’d)
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Choose A



Example (cont’d)
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Choose E

Finish with B

Normalize



Another Variable Elimination Example

306

Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of factor 
= number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 



Variable Elimination Ordering

• For the query P(Xn|y1,…,yn) work through the following two different orderings as done in previous 
slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the maximum factor generated for each of the 
orderings?

• Answer: 2n versus 2 (assuming binary)

• In general: the ordering can greatly affect efficiency 307

…

…



VE: Computational and Space Complexity

• The computational and space complexity of variable elimination is determined by 
the largest factor

• The elimination ordering can greatly affect the size of the largest factor
• E.g., previous slide’s example 2n vs. 2

• Does there always exist an ordering that only results in small factors?
• No!
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Worst Case Complexity?

• CSP:  

• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution

• Hence inference in Bayes’ nets is NP-hard.  No known efficient probabilistic inference in general 309

…

…



Variable Elimination: The basic ideas

• Move summations inwards as far as possible
• P(B | j, m) =  α eaP(B) P(e) P(a|B,e) P(j|a) P(m|a)

=  α P(B) e P(e) a P(a|B,e) P(j|a) P(m|a)

• Do the calculation from the inside out
• I.e., sum over a first, then sum over e
• Problem: P(a|B,e) isn’t a single number, it’s a bunch of different numbers 

depending on the values of B and e
• Solution: use arrays of numbers (of various dimensions) with appropriate 

operations on them; these are called factors
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